Современная формулировка периодического закона. Периодический закон Д

30.01.2024

В результате успешного освоения материала этой главы студент должен:

знать

  • современную формулировку периодического закона;
  • связь структуры периодической системы и энергетической последовательности подуровней в многоэлектронных атомах;
  • определений понятий «период», «группа», «5-элементы», «р-эле- менты», «d- элементы», «/-элементы», «энергия ионизации», «сродство к электрону», «электроотрицательность», «радиус Ван-дер-Вааль- са», «кларк»;
  • основной закон геохимии;

уметь

Описывать структуру периодической системы в соответствии с правилами Клечковского;

владеть

Представлениями о периодическом характере изменения свойств атомов и химических свойств элементов, об особенностях длиннопериодного варианта периодической системы; о связи распространенности химических элементов с их положением в периодической системе, о макро- и микроэлементах в литосфере и живом веществе.

Современная формулировка периодического закона

Периодический закон - наиболее общий закон химии - был открыт Дмитрием Ивановичем Менделеевым в 1869 г. В то время строение атома еще не было известно. Д. И. Менделеев сделал свое открытие, основываясь на закономерном изменении свойств элементов при увеличении атомных масс.

После открытия строения атомов стало ясно, что их свойства определяются строением электронных оболочек, которое зависит от общего числа электронов в атоме. Число электронов в атоме равно заряду его ядра. Поэтому современная формулировка периодического закона звучит следующим образом.

Свойства химических элементов и образуемых ими простых и сложных вешеств находятся в периодической зависимости от заряда ядра их атомов.

Значение периодического закона состоит в том, что он является главным инструментом систематизации и классификации химической информации, очень важным средством интерпретации, толкования химической информации, мощным инструментом предсказания свойств химических соединений и средством направленного поиска соединений с заранее заданными свойствами.

Периодический закон не имеет математического выражения в виде уравнений, он находит свое отражение в таблице, которую называют периодической системой химических элементов. Существует много вариантов таблиц периодической системы. Наиболееширокое распространение получили длиннопериод- ный и короткопериодный варианты, помещенные на первой и второй цветных вклейках книги. Основной структурной единицей периодической системы является период.

Периодом с номером п называют последовательность химических элементов, расположенных в порядке возрастания заряда ядра атома, которая начинается ^-элементами и заканчивается ^-элементами.

В этом определении п - номер периода, равный главному квантовому числу для верхнего энергетического уровня в атомах всех элементов этого периода. В атомах s-элементов достраиваются 5-подуровни, в атомах р-элементов - соответственно р-подуровни. Исключение из приведенного выше определения составляет первый период, в котором нет p-элементов, так как на первом энергетическом уровне (п = 1) существует только 15-нодуровень. В периодической системе присутствуют также d-элементы , у которых достраиваются ^-подуровни, и /-элементы, у которых достраиваются /-подуровни.

Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году и назывался «Опыт системы элементов».

Д.И. Менделеев расположил 63 известных в то время элемента в порядке возрастания их атомных масс и получил естественный ряд химических элементов , в котором он обнаружил периодическую повторяемость химических свойств. Данный ряд химических элементов теперь известен как Периодический закон (формулировка Д.И. Менделеева):

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Современная формулировка закона звучит так:

с войства химических элементов, простых веществ, а также состав и свойства соединений находятся в периодической зависимости от значений зарядов ядер атомов.

Графическим изображением периодического закона является периодическая таблица .

В ячейке каждого элемента указаны его важнейшие характеристики.

Периодическая таблица содержит группы и периоды.

Группа - столбец периодической системы, в котором располагаются химические элементы, обладающие химическим сходством вследствие идентичных электронных конфигураций валентного слоя.

Периодическая система Д.И. Менделеева содержит восемь групп элементов. Каждая группа состоит их двух подгрупп: главной (а) и побочной (б). В главной подгруппе содержатся s- и p- элементы, в побочной - d- элементы.

Названия групп:

I-a Щелочные металлы.

II-a Щелочноземельные металлы.

V-a Пниктогены.

VI-a Халькогены.

VII-a Галогены.

VIII-a Благородные (инертные) газы.

Период - это последовательность элементов, записанная в виде строки, расположенных в порядке увеличения зарядов их ядер. Номер периода соответсвует количеству электронных уровней в атоме.

Период начинается с щелочного металла (или водорода) и заканчивается благородным газом.

Параметр

По группе вниз

По периоду вправо

Заряд ядра

Увеличивается

Увеличивается

Число валентных электронов

Не меняется

Увеличивается

Число энергетических уровней

Увеличивается

Не меняется

Радиус атома

Увеличивается

Уменьшается

Электроотрицательность

Уменьшается

Увеличивается

Металлические свойства

Увеличиваются

Уменьшаются

Степень окисления в высшем оксиде

Не меняется

Увеличивается

Степень окисления в водородных соединениях (для элементов IV-VII групп)

Не меняется

Увеличивается


Современная периодическая таблица химических элементов Менделеева.

Периодический закон Д.И Менделеева.

Свойства химических элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости, от величины атомного веса.

Физический смысл периодического закона.

Физический смысл периодического закона заключается в периодичном изменении свойств элементов, в результате периодически повторяющихся e-ых оболочек атомов, при последовательном возрастании n.

Современная формулировка ПЗ Д.И Менделеева.

Свойство химических элементов, а также свойство образованных ими простых или сложных веществ находится в периодичной зависимости от величины заряда ядер их атомов.

Периодическая система элементов.

Периодическая система – система классификаций химических элементов, созданная на основе периодического закона. Периодическая система – устанавливает связи между химическими элементами отражающие их сходства и различия.

Периодическая таблица(существует два вида: короткая и длинная) элементов.

Периодическая таблица элементов – графическое отображение периодической системы элементов, состоит из 7 периодов и 8 групп.

Вопрос 10

Периодическая система и строение электронных оболочек атомов элементов.

В дальнейшем было установлено, что не только порядковый номер элемента имеет глубокий физический смысл, но и другие понятия, ранее рассмотренные ранее также постепенно приобретали физический смысл. Например, номер группы, указывая на высшую валентность элемента, выявляет тем самым максимальное число электронов атома того или иного элемента, которое может участвовать в образовании химической связи.

Номер периода, в свою очередь, оказался связанным с числом энергетических уровней, имеющихся в электронной оболочке атома элемента данного периода.

Таким образом, например, „координаты" олова Sn (порядковый номер 50, 5 период, главная подгруппа IV группы), означают, что электронов в атоме олова 50, распределены они на 5 энергетических уровнях, валентными являются лишь 4 электрона.

Физический смысл нахождения элементов в подгруппах различных категорий чрезвычайно важен. Оказывается, что у элементов, расположенных в подгруппах I категории, очередной (последний) электрон располагается на s-подуровне внешнего уровня. Эти элементы относят к электронному семейству. У атомов элементов, расположенных в подгруппах II категории, очередной электрон располагается на р-подуровне внешнего уровня. Это, элементы электронного семейства „р". Так, очередной 50-й электрон у атомов олова располагается на р-подуровне внешнего, т. е. 5-го энергетического уровня.

У атомов элементов подгрупп III категории очередной электрон располагается на d-подуровне , но уже пред внешнего уровня, это элементы электронного семейства «d». У атомов лантаноидов и актиноидов очередной электрон располагается на f-подуровне, пред пред внешнего уровня. Это элементы электронного семейства «f».

Не случайно, следовательно, отмеченные выше числа подгрупп этих 4-х категорий, то есть 2-6-10-14, совпадают с максимальными числами электронов на подуровнях s-p-d-f.

Но можно, оказывается, решить вопрос о порядке заполнения электронной оболочки и вывести электронную формулу для атома любого элемента и на основе периодической системы, которая с достаточной ясностью указывает уровень и подуровень каждого очередного электрона. Периодическая система указывает и на размещение одного за другим элементов по периодам, группам, подгруппам и на распределение их электронов по уровням и подуровням, потому что каждому элементу соответствует свой собственный, характеризующий его последний электрон. В качестве примера разберем составление электронной формулы для атома элемента циркония (Zr). Периодическая система дает показатели и „координаты" этого элемента: порядковый номер 40, период 5, группа IV, побочная подгруппа. Первые выводы: а) всех электронов 40, б) эти 40 электронов распределены на пяти энергетических уровнях; в) из 40 электронов только 4 являются валентными, г) очередной 40-й электрон поступил на d-подуровень пред внешнего, т. е. четвертого энергетического уровня. Подобные выводы можно сделать о каждом из 39 элементов, предшествующих цирконию, только показатели и координаты будут каждый раз иными.

Периодический закон – основной закон химии – был открыт в 1869 году Д.И. Менделеевым. В то время атом еще считался неделимым и ничего не было известно о его внутреннем строении.

Атомные массы (тогда – атомные веса ) и химические свойства элементов были положены в основу Периодического закона Д.И. Менделеева. Д.И. Менделеев, расположив 63 известных в то время элемента в порядке возрастания их атомных масс, получил естественный (природный) ряд химических элементов, где он отметил периодическую повторяемость химических свойств. Например, типичного неметалла фтор F повторялись у элементов хлор Сl, бром Br, йод I, свойства типичного металла литий Li – у элементов натрий Na и калий К и т.д.

Для некоторых элементов Д.И. Менделеевым не было обнаружено химических аналогов (у алюминия Al и кремния Si, например), в сиу того что в то время такие аналоги известны еще не были. В таблице им предназначались пустые места, но на основе периодической повторяемости ученый предсказал их химические свойства). После открытия соответствующих элементов предсказания Д.И. Менделеева полностью подтвердились (аналог алюминия – галлий Ga, аналог кремния – германий Ge ).

Периодический закон в формулировке Д.И. Менделеева представлен так: в периодической зависимости от величины атомных весов элементов находятся свойства простых тел, а также формы и свойства соединений элементов.

Современная формулировка Периодического закона Д.И. Менделеева звучит следующим образом: свойства элементов находятся в периодической зависимости от порядкового номера.

Периодический закон Д.И. Менделеева стал базой для создания ученым Периодической системы химических элементов . Она представлена 7 периодами и 8 группами.

Периодами называются горизонтальные ряды таблицы, которые делятся на малые и большие. 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды) находятся в малых периодах, а в больших периодах находятся 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й период), 7-й период пока остается незавершенным. Каждый период с типичного металла начинается и заканчивается типичным неметаллом и благородным газом.

Группами элементов называются вертикальные столбцы. Каждая группа представлена двумя подгруппами – главной и побочной . Подгруппой называется совокупность элементов, которые являются полными химическими аналогами; часто элементы подгруппы имеют высшую степень окисления, соответствующую номеру группы. Например, высшая степень окисления (+ II) отвечает элементам подгруппы бериллия и цинка (главная и побочная подгруппы II группы), а элементам подгруппы азота и ванадия (V группа) отвечает высшая степень окисления (+ V).

Химические свойства элементов в главных подгруппах могут меняться от неметаллических до металлических (в главной подгруппе V группы азот – неметалл, а висмут – метал) – в широком диапазоне. Свойства элементов в побочных подгруппах меняются, но не столь резко; например, элементы побочной группы IV группы – цирконий, титан, гафний – очень похожи по своим свойствам (особенно цирконий и гафний ).

В Периодической системе в I группе (Li – Fr), II (Mg – Ra) и III (In, Tl) расположены типичные металлы. Неметаллы расположены в группах VII (F – At), VI (O – Te) , V (N – As) , IV (C, Si) и III (B). Некоторые элементы главных групп (Be, Al, Ge, Sb, Po ), а также многие элементы побочных групп могут проявлять и металлические, и неметаллические свойства. Это явление получило название амфотерности .

Для некоторых главных групп применяют групповые названия: VIII (Не – Rn) – благородные газы , VII (F – At) – галогены , IV (О – Ро) – халькогены , II (Са – Ra) – щелочноземельные металлы , I (Li – Fr) – щелочные металлы .

Форма Периодической системы, которую предложил Д.И. Менделеев, получила название короткопериодной , или классической . В современной химии все шире используется другая форма – длиннопериодная , в которой все периоды – малые и большие – вытянуты в длинные ряды, начинающиеся щелочным металлом и заканчивающиеся благородным газом.

Периодический закон Д.И. Менделеева и Периодическая система элементов Д.И. Менделеева стали основой современной химии.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В 1871 году был сформулирован периодический закон Менделеева. К этому времени науке было известно 63 элемента, и Дмитрий Иванович Менделеев упорядочил их на основе относительной атомной массы. Современная периодическая таблица значительно расширилась.

История

В 1869 году, работая над учебником химии, Дмитрий Менделеев столкнулся с проблемой систематизации материала, накопленного за много лет разными учёными - его предшественниками и современниками. Ещё до работы Менделеева предпринимались попытки систематизировать элементы, что послужило предпосылками разработки периодической системы.

Рис. 1. Менделеев Д. И..

Поиски классификации элементов кратко описаны в таблице.

Менделеев упорядочил элементы по относительной атомной массе, расположив их в порядке возрастания. Всего получилось девятнадцать горизонтальных и шесть вертикальных рядов. Это была первая редакция периодической таблицы элементов. С этого начинается история открытия периодического закона.

Учёному понадобилось почти три года, чтобы создать новую, более совершенную таблицу. Шесть столбцов элементов превратились в горизонтальные периоды, каждый из которых начинался щелочным металлом, а заканчивался неметаллом (инертные газы ещё не были известны). Горизонтальные ряды образовали восемь вертикальных групп.

В отличие от своих коллег Менделеев использовал два критерия распределения элементов:

  • атомную массу;
  • химические свойства.

Оказалось, что между двумя этими критериями прослеживается закономерность. После определённого количества элементов с возрастающей атомной массой, свойства начинают повторяться.

Рис. 2. Таблица, составленная Менделеевым.

Изначально теория не выражалась математически и не могла полностью подтвердиться экспериментально. Физический смысл закона стал понятен только после создания модели атома. Смысл заключается в повторении структуры электронных оболочек при последовательном увеличении зарядов ядер, что отражается на химических и физических свойствах элементов.

Закон

Установив периодичность изменений свойств с увеличением атомной массы, Менделеев в 1871 году сформулировал периодический закон, ставший основополагающим в химической науке.

Дмитрий Иванович определил, что свойства простых веществ находятся в периодической зависимости от относительных атомных масс.

Наука XIX века не обладала современными знаниями об элементах, поэтому современная формулировка закона несколько отличается от менделеевской. Однако суть остаётся прежней.

С дальнейшим развитием науки было изучено строение атома, что повлияло на формулировку периодического закона. Согласно современному периодическому закону свойства химических элементов зависят от зарядов атомных ядер.

Таблица

Со времён Менделеева созданная им таблица значительно преобразилась и стала отражать практически все функции и характеристики элементов. Умение пользоваться таблицей необходимо для дальнейшего изучения химии. Современная таблица представлена в трёх формах:

  • короткая - периоды занимают по две строчки, а водород часто относят к 7 группе;
  • длинная - изотопы и радиоактивные элементы вынесены за пределы таблицы;
  • сверхдлинная - каждый период занимает отдельную строку.

Рис. 3. Длинная современная таблица.

Короткая таблица - наиболее устаревший вариант, который был отменён в 1989 году, но по-прежнему используется во многих учебниках. Длинная и сверхдлинная формы признаны международным сообществом и используются по всему миру. Несмотря на установленные формы, учёные продолжают совершенствовать периодическую систему, предлагая новейшие варианты.

Что мы узнали?

Периодический закон и периодическая система Менделеева были сформулированы в 1871 года. Менделеев выявил закономерности свойств элементов и упорядочил их на основе относительной атомной массы. С возрастанием массы менялись, а затем повторялись свойства элементов. Впоследствии таблица была дополнена, а закон скорректирован в соответствии с современными знаниями.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 122.

Похожие статьи
 
Категории