Методические особенности расширения числовых множеств. Принцип расширения числового множества

28.01.2024

Чтобы множество Q+ положительных рациональных чисел являлось расширением множества N натуральных чисел, необходимо выполнение ряда условий.

Первое условие - это существование между N и Q+ отношения включения. Докажем, что N Q+.

Пусть длина отрезка х при единичном отрезке е выражается натуральным числом т. Разобьем единичный отрезок на п равных частей. Тогда n -ая часть единичного отрезка будет укладываться в отрезке х точно раз, т. е. длина отрезка х будет выражена дробью. Значит, длина отрезка х выражается и натуральным числом т, и положительным рациональным числом. Но это должно п быть одно и то же число.

Так, например, натуральное число 6 можно представить в виде следующих дробей: , и т. д.

Отношение между множествами N и Q+ представлено на рисунке 28.

Числа, которые дополняют множество натуральных чисел до множества положительных рациональных, называются дробными.

Второе условие, которое должно быть выполнено при расширении множества натуральных чисел, - это согласованность операций, т. е. результаты арифметических действий, произведенных по правилам, существующим для натуральных чисел, должны совпадать с результатами действий над ними, но выполненных по правилам, сформулированным для положительных рациональных чисел. Нетрудно убедиться в том, что и это условие выполняется.

Пусть а и b - натуральные числа, - их сумма, полученная по правилам сложения в N. Вычислим сумму чисел а и b по правилу сложения в Q+.

Так как, то

Третье условие, которое должно быть выполнено при расширении множества натуральных чисел - это выполнимость в Q+ операции, не всегда осуществимой в N. И это условие соблюдено: деление, которое не всегда выполняется в множестве N, в множестве Q+ выполняется всегда.

Сделаем еще несколько дополнений, раскрывающих взаимосвязи между натуральными и положительными рациональными числами.

1. Черту в записи дроби можно рассматривать как знак деления.

Действительно, возьмем два натуральных числа т и п и найдем их частное по правилу (4) деления положительных рациональных чисел:

Обратно, если дана дробь, то ее можно рассматривать как частное натуральных чисел т и п .

2. Любую неправильную дробь можно представить либо в виде натурального числа, либо в виде смешанной дроби.

Пусть - неправильная дробь. Тогда т > п. Если т кратно п, то в этом случае дробь является записью натурального числа. Если число т не кратно п, то разделим т на п с остатком: , где. Подставим вместо т в запись и применим правило (1) сложения положительных рациональных чисел:

Так как , то дробь - правильная. Следовательно, неправильная дробь оказалась представленной в виде суммы натурального числа q и правильной дроби. Это действие называется выделением целой части из неправильной дроби. Например,.

Сумму натурального числа и правильной дроби принято записывать без знака сложения: т. е. вместо пишут и называют такую запись смешанной дробью.

Справедливо также утверждение: всякую смешанную дробь можно записать в виде неправильной дроби. Например:

Основными математическими объектами с незапамятных времен являются числа, множества и элементы множества, их свойства. Число - абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое понятие. Письменными знаками (символами) для записи чисел служат цифры . Современная математика оперирует несколько другими математическими понятиями. Если внимательно проанализировать их суть, то они, в общем-то, являются эквивалентными или изоморфными понятиям «число», «множество», «отображение», «свойство».

В теоретико-множественном смысле числа являются классом множеств с определенными свойствами. Эти свойства выражаются через тип упорядоченности, размерность, топологические и метрические свойства основанных на них множеств. Основное свойство чисел - это их мощность, которая может быть конечной, счетной или континуальной. Соответственно, числа могут быть представителями любого класса множеств с подходящей мощностью. Даже множества с мощностью больше континуума можно представить как множество всех функций, определенных на числовом множестве. В этом проявляется универсальность понятия «число».

Другое важное свойство чисел - это ее размерность. Есть несколько классов чисел с различающимися свойствами. Есть линейные (одномерные) числа - это натуральные N, положительные N + , целые Z, рациональные R и вещественные Q числа. Есть составные многомерные или гиперкомплексные числа - это комплексные числа C, кватернионы H, бикватернионы B , невырожденные квадратные матрицы M, числа Клиффорда K и другие. Тензор (в том числе и вектор) в обычном понимании не является числом.

Интересным видом чисел являются гипердействительные числа. Они появляются в нестандартном анализе, использующем понятия «бесконечно малые» и «бесконечно большие» чисел как расширение множества действительных до этих «бесконечных» чисел.

Попробуем определить, что такое «число». Точнее, виды чисел.

Самыми простыми числами являются целые, рациональные, вещественные и комплексные числа. Они коммутативны, ассоциативны и дистрибутивны.

Основными видами чисел, обладающими похожими свойствами, являются четыре вида чисел. Это действительные числа, комплексные, кватернионы и октавы. Коммутативность умножения для последних двух видов чисел не выполняется. Но они все обладают алгебрами без делителей нуля.

Дальнейшие расширения чисел могут не иметь и свойство ассоциативности. Дистрибутивность соблюдается.

Основные виды чисел

Натуральные числа , получаемые при естественном счёте; множество натуральных чисел обозначается N. Т.о. (иногда к множеству натуральных чисел также относят ноль, то есть N = {0, 1, 2, 3, …}). Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Натуральные числа коммутативны и ассоциативны относительно сложения и умножения, а умножение натуральных чисел дистрибутивно относительно сложения.

Целые числа получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются Z = {-2, -1, 0, 1, 2, …}. Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления).

Рациональные числа - числа, представленные в виде дроби m /n (n ? 0), где m - целое число, а n - натуральное число. Для рациональных чисел определены все четыре «классические» арифметические действия: сложение, вычитание, умножение и деление (кроме деления на ноль). Для обозначения рациональных чисел используется знак Q.

Действительные (вещественные) числа представляют собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа ) операций предельного перехода. Множество вещественных чисел обозначается R. Его можно рассматривать как пополнение поля рациональных чисел Q при помощи нормы , являющейся обычной абсолютной величиной . Кроме рациональных чисел, R включает множествоиррациональных чисел , не представимых в виде отношения целых. Кроме подразделения на рациональные и иррациональные, действительные числа также подразделяются на алгебраические и трансцендентные . При этом каждое трансцендентное число является иррациональным, каждое рациональное число - алгебраическим.

Комплексные числа , являющиеся расширением множества действительных чисел. Они могут быть записаны в виде z = x + iy , где i - т. н. мнимая единица , для которой выполняется равенство i 2 = -1. Комплексные числа используются при решении задач квантовой механики , гидродинамики, теории упругости и пр.

Для перечисленных множеств чисел справедливо следующее выражение: N ? Z ? Q ? R ? C.

Гипердействительные числа - это числа вида:

1) a + ?, где a - обычное число, a - бесконечно малое число;

2) ? = 1/? - бесконечно большое число.

Гипердействительные числа не являются числами в обычном понимании. Они применяются во многих разделах математики , особенно в дифференциальном и интегральном исчислениях, а также везде, где используются предельные числовые последовательности, даже при определении вещественных чисел.

Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа a = m /n знаменатель n = 1, то a = m является целым числом. В этой связи возникают некоторые обманчивые предположения. Во-первых, кажется, что рациональных чисел больше чем целых, на самом же деле и тех и других счётное число . Во-вторых, возникает предположение, что такими числами можно измерить абсолютно точно любое расстояние в пространстве. На самом деле, для этого используются вещественные числа , рациональных же чисел для этого недостаточно.

Виды дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной.

Например, дроби 3/5, 7/8 и 1/2 - правильные дроби, в то время как 8/3, 9/5, 2/1и 1/1 - неправильные дроби. Всякое целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Например, . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Несмотря на то, что рациональных чисел бесконечное множество и то, что мы можем записать только не бесконечно большие числа, можно считать, что мы можем записать любое рациональное число указанным выше способом, потому что любое рациональное число явно не бесконечное и запись ее будет содержать конечное число символов.

Высота дроби

Высота обыкновенной дроби - то модуль суммы числителя и знаменателя этой дроби. Высота рационального числа - это модуль суммы числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби (-15/6) равна 15 + 6 = 21. Высота же соответствующего рационального числа равна 5 + 2 = 7, так как дробь сокращается на 3.

Как следствие, множество рациональных чисел является счетным множеством. Дробь рациональное число нерациональное число

Это множество обладает свойством непрерывности. Это означает, что между любыми неравными между собой числами можно найти третье число, не равное предыдущему. Более того, сечение рациональных чисел на две половинки может быть открытым по одной или обеим границам этого сечения.

Множество рациональных чисел является абелевой группой по операциям «сложение» и «умножение» по отдельности.

Множество рациональных чисел является полем по операциям «сложение» и «умножение».

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар {(m , n ) | m ? Z, n ? N} по отношению эквивалентности (m , n ) ~ (m ", n "), если m n " = m " n . При этом операции сложения и умножения определяются следующим образом:

  • (m 1 , n 1) + (m 2 , n 2) = (m 1 , n 2 + m 2 , n 1 , n 1 n 2),
  • (m 1 , n 1) (m 2 , n 2) = (m 1 m 2 , n 1 n 2).

Свойства рациональных чисел

Рациональные числа удовлетворяют шестнадцати основным свойствам , которые легко могут быть получены из свойств целых чисел .

  • 1. Упорядоченность. Для любых рациональных чисел a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений: «
  • ?a , b ? Q: a b ? b a ? a = b
  • 2. Транзитивность отношения порядка. Для любой тройки рациональных чисел a, b и c если a меньше b и b меньше c, то a меньше c, а если a равно b и b равно c, то a равно c.
  • ?x , y , z ? Q: (x y) ? (y z)> x z (транзитивность порядка);
  • 3. Операция сложения. Для любых рациональных чисел a и b существует так называемое правило суммирования, которое ставит им в соответствие некоторое рациональное число c. При этом само число c называется суммой чисел a и b и обозначается (a + b), а процесс отыскания такого числа называется суммированием. Правило суммирования имеет следующий вид: (m1/n1) + (m2/n2) = (m1 n2 + m2 n1)/(n1 n2).
  • ?a , b ? Q: ?(a + b ) ? Q
  • 4. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  • (?x , y ? Q): (x + y ) = (y + x )
  • 5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  • (?x , y , z ? Q): (x + y ) + z = x + (y + z )
  • 6. Наличие нуля. Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  • (?0? Q) (?x ? Q) : (x + 0 = x )
  • 7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  • (?x , y ? Q) ?(-x ? Q): (x + (-x ) = 0).
  • 8. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.
  • ?x , y , z ? Q: (x y) > (x + z ) y + z
  • 9. Операция умножения. Для любых рациональных чисел a и b существует так называемое правило умножения, которое ставит им в соответствие некоторое рациональное число c. При этом само число c называется произведением чисел a и b и обозначается (a · b), а процесс отыскания такого числа также называется умножением. Правило умножения имеет следующий вид:ma/na · mb/nb = ma · mb / na · na.
  • ?a , b ?Q: ?(a · b ) ? Q
  • 10. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  • ?x , y ? Q: (x y ) = (y x );
  • 11. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  • ?x , y , z ? Q: (x y ) z = x (y z );
  • 12. Наличие единицы. Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  • ?1? Q{0}: ?x ? Q: x 1 = x ;
  • 13. Наличие обратных чисел. Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  • ?x ? Q{0}:?x - 1: x x - 1 = 1.
  • 14. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.
  • ?x , y , z ? Q: (x y) ? (z > 0) > y z x z
  • 15. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
    • (?x , y , z ? Q: (x + y ) z = x z + y z
  • 16. Аксиома Архимеда. Каково бы ни было рациональное число a, можно взять столько единиц, что их сумма превзойдёт a.

?a ? Q ?n ? N: > a

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Второе отношение порядка «>» также транзитивно.

?x , y , z ? Q: (x > y ) ? (y > z )> x > z (транзитивность порядка);

Произведение любого рационального числа на ноль равно нулю.

?x ? Q: x · 0 = 0;

Отсутствие делителей нуля.

Рациональные неравенства одного знака можно почленно складывать.

?a , b , c , d ? Q: a > b ? c > d > a + c > b + d

Множество рациональных чисел Q является полем (а именно, полем частных кольца целых чисел Z) относительно операций сложения и умножения дробей.

Каждое рациональное число является алгебраическим .

Математика в силу своей специфики предоставляет большие возможности для учителя в плане развития мышления детей. Развивать мышление учащихся можно при изучении, практически, любой математической темы. Мы остановились на рассмотрении долей и дробей, и именно это обусловило выбор темы нашего исследования: «Развитие мышления младших школьников в процессе пропедевтической работы по изучению дробей».

Отношения между множествами.

1) множества не имеют общих элементов

2) два множества имеют общие элементы

3) одно множество является подмножеством другого. Множество называется подмножеством множества А, если каждый элемент множества В является элементом множества А. Также говорят, что множество В включено в множество А

4) два множества равны. Множества называются равными или совпадающими. Если каждый элемент множества А является элементом множества В и наоборот.

Пустое множество является подмножеством любого множества.


Объединение множеств и его свойства. Пересечение множеств и его свойства.

1. а) объединение двух множеств . Объединением двух множеств А и В называется множество С, состоящее из всех тех элементов, которые принадлежат множеству А или множеству В. Объединение определяется штриховкой и обозначается

А В В А В А В

1) А U В=С, 2) 3) АU В=А, 4) АUВ=А=В.

б) свойства операции объединения множеств:

· коммутативное свойство: АUВ=ВUА

· ассоциативное свойство: АU (ВUС)=(АUВ) UС

· закон поглощения: АUА=А; АUØ=А; АUУ=У.

2. а) пересечение двух множеств . Пересечением двух множеств А и В называется множество С, содержащее все элементы, которые принадлежат и множеству В одновременно.

А В А В А В

1) А∩В= Ø, 2) 3) А∩В=В 4) А∩В=А=В.

б) свойства пересечения:

· коммутативное свойство: А∩В= В∩А

· ассоциативное свойство: А∩(В∩С)=(А∩В)∩С

· закон поглощения: А∩А=А, А∩ Ø= Ø, А∩У=А

Дистрибутивные свойства, связывающие операции объединения и пересечения.

Их можно доказать на кругах Эйлера.

1). АU (В∩С)=(АUВ)∩(АUС)

2). А∩(ВUС)=(А∩В) U (А∩С)

Доказательство. Обозначим левую часть равенства М, а правую – Н. Чтобы доказать верность данного равенства, докажем, что множество М включено в Н, а Н в М.

Пусть 1). (произвольно выбранный элемент).


Принцип расширения числового множества. Множества целых и рациональных чисел, их свойства.

1. Расширяемое множество является подмножеством расширенного множества (натуральные числа являются подмножеством целых) N – множество натуральных чисел, Z – множество целых чисел, Q – множество рациональных чисел, R – множество действительных чисел.

2. Операция арифметических действий в расширяемом R

Множестве, являющаяся алгебраической, выполняется

Точно также и в расширенном множестве. Если в Q

Расширяемом множестве арифметические действия Z

не выполняются, т.е. операция не является N

алгебраической, то в расширенном множестве эта

операция становится алгебраической.

Н-р: вычитание во множестве натуральных чисел

неалгебраическая операция, а во множестве целых чисел – алгебраическая. Деление во множестве целых чисел неалгебраическая, а во множестве рациональных чисел – алгебраическая.

Множество целых чисел (Z) включает в себя множество натуральных чисел, число 0 и числа противоположные натуральным. Множество целых чисел можно расположить на числовой прямой так, что каждому целому числу будет соответствовать одна и только одна точка на числовой прямой. Обратное утверждение не верно, любой точке не всегда будет соответствовать целое число.

Целые числа расположены на числовой прямой на одинаковом расстоянии от 0. Число 0 называется нейтральным элементом. Число, находящееся от заданного числа на таком же расстоянии левее 0, называется противоположным. Сумма двух противоположных чисел равна 0.

Z – является линейно упорядоченным, т.е. для любых чисел А и В, взятых из Z, справедливо одно из следующих отношений А=В, А<В, А>В. Z является счетным множеством. Множество называется счетным, если оно эквивалентно множеству натуральных чисел, т.е. можно установить соответствия между заданным множеством и множеством N.

Покажем, что Z является счетным, т.е. каждому натуральному числу взаимно однозначно (единственным образом) соответствует целое число. Для того, чтобы установить такое соответствие поставим каждому нечетному натуральному числу в соответствие отрицательное целое число. А каждому четному натуральному числу поставим соответствие положительное число. Установив такое соответствие можно показать, что оно будет взаимно однозначным, а значит множество Z является счетным.

Z является дискретным. Множество дискретно, если оно упорядочено и между любыми двумя элементами этого множества находится конечное число элементов данного множества.

Множество рациональных чисел (Q). К рассмотрению дробных чисел привела необходимость измерения различных величин. Впервые дроби появились в ДР. Египте, но рассматривались только как доли 1, т.е. рассматривались только дроби вида 1\н. Дроби появились на геометрической основе при измерении длин отрезков. Н-р. пусть дан отрезок А, чтобы измерить этот отрезок, выбирается в качестве единицы длины другой отрезок Е и укладывается в заданном. если оказывается, что отрезок Е уложится равное число раз, то длина отрезка А выражается натуральным числом. Но часто оказывалось, что отрезок Е укладывался неравное число раз. Тогда его разбивали на более мелкие части и получали отрезок Е 1 и уже этот отрезок укладывали в заданном отрезке А. Тогда длина отрезка А измерялась парой натуральных чисел. Первое число показывало, сколько раз в отрезке А уложился отрезок Е. Второе число показывало, сколько раз уложился отрезок Е 1 в остатке отрезка А после измерения отрезка Е. Эта пара чисел и определяла дробь. Запись вида м\н называется дробью, где м и н натуральные числа. Две дроби называют эквивалентными (равносильными), если произведение числителя первой дроби на знаменатель второй равно произведению знаменателя первой дроби на числитель второй.

Свойства множества рациональных чисел . 1). Q является линейно упорядоченным, т.е.для любых рациональных чисел А и В выполняется одно из отношений А=В, А>В, А<В. Рациональное число , если a*d>b*c . Докажем, что Q линейно упорядоченное и отношение является отношением строгого порядка.

Докажем антисимметричность . Из того, что , из того, что дробь . Т.К. во множестве натуральных чисел отношение «больше» антисимметрично, можно записать .

Докажем транзитивность отношения «больше».

Если , то

Так как произведение (bc)n=(cn)b и отношение «больше» в множестве натуральных чисел транзитивно → (ad)n>(dm)b | сократим на d

Так как выполняются свойства антисимметричности и транзитивности, то отношение «больше» является отношением строгого порядка.

2). Любому рациональному числу можно поставить в соответствие единственную точку числовой прямой. Обратное утверждение неверно.

3). Q является множеством всюду плотным. Числовое множество называется всюду плотным, если оно линейно упорядочено и между любыми двумя его элементами находится бесконечное количество элементов заданного множества. Для доказательства этого выберем на числовой прямой два рациональных числа к 1 , к 2 . докажем. Что между ними находится бесконечно много рациональных чисел. Используем операцию нахождения среднего арифметического


К 1 к 4 к 3 к 5 к 2

Число к – рациональное, так как операция сложения и деления на 2 определены. Процесс нахождения среднеарифметического всегда выполним и бесконечен, т.е. между к и к находится бесконечно много рациональных чисел.

4). Q – счетное множество, так как оно равномощно множеству натуральных чисел.


3 . Разность между множествами, дополнение одного множества до другого. Свойства разности и дополнения. Разностью множеств А и В называется множество С, элементы которого принадлежат множеству А, но не принадлежат множеству В. Если множество В является подмножеством множества А, то разность между множествами А и В называется дополнением множества В до множества А.


А В \ - разность А В

А={a 1, a 2 , a 3 ...a k } n(A)=k

B={b 1 , b 2 , b 3 ,…b t } n(B)=t

Докажем, что n(AUB)=k+t

AUB={a 1 , a 2 , a 3 ,…a k , b k+1 , b k+2 ,…b k+t }

A∩B=Ø n(AUB)=k+t

n(AUB)=n(A)+n(B).

2. Если множества пересекаются. Число элементов объединения двух конечных пересекающихся множеств равно разности между суммой численности этих множеств и численности пересечения данных множеств. Доказательство.

A={a 1 , a 2 , a 3 ,…a s, a s+1, a s+2…… a s+t } n(A)=s+t

B={a 1 , a 2 , a 3 , …a s , b s+1 , b s + 2 , b s + 3 ,…s+k } n(B)=s+k

A∩B={a 1 , a 2 , a 3 ,…a s } n(A∩B)=s

AUB={a 1 , a 2 ,…a s …a s+t , b s+1 , b s + 2 , b s + 3 …b s + k }

n(AUB=s+t+k=s+t+k+s-s=(s+t)+(s+k)-s, тогда

n(AUB)=n(A)+n(B)-n(A∩B);

3. Число элементов дополнения конечного множества А до конечного множества В равно разности численности этих множеств. Доказательство.

B={b 1 , b 2 , b 3 …b k }

А={b 1 , b 2 , b 3 ,……b m } m

(B\A)={b m+1 , b m+2 ,…b k } n(B\A)=k-m Þ

Первое расширение понятия о числе, которое учащиеся усваивают после ознакомления с натуральными числами, - добавление нуля. Происходит это еще в начальной школе.

Сначала «О» - знак для обозначения отсутствия числа. Почему же нельзя делить на нуль?

Разделить - значит найти такой х , что: х-0 = а. Возможны два случая:

1) а * х: дг-0 * 0. Это невозможно;

2) а = 0, следовательно, надо найти хг. х-0 = 0. Таких х сколько угодно, что противоречит требованию однозначности каждой арифметической операции:

Есть учебники, где основные законы действий считаются справедливыми без необходимых обоснований.

В курсе математики 5-6-х классов имеет место построение множества рациональных чисел. Следует отметить, что последовательность расширений множеств не однозначна. Возможные варианты:


Элементарное понятие о дробном числе дается уже в начальной школе как о нескольких долях единицы.

В основной школе дроби и действия над ними обычно вводятся методом целесообразных задач, придуманным еще С. И. Шохор- Троцким, например, при рассмотрении следующей задачи.

  • 1 кг сахарного песка стоит 15 руб. Сколько стоят 4 кг песка? 5 кг?
  • - кг?

Ученики могут умножить 15 на 4, на 5, теперь им требуется найти

От 15. Ученики могут разделить на 3, найдя, сколько стоит одна доля 3

килограмма, и умножить на 2, чтобы определить, сколько стоят две таких доли. Поскольку одну и ту же задачу разумно решать одинаковым арифметическим действием, то они приходят к выводу, что эти два последовательных действия равнозначны умножению 15 на -.

При введении дробных чисел желательно учитывать опыт учащихся, опираться на него. С дробями ученики встречаются в музыке. Самые распространенные дроби в ней: две четверти, три четверти, переводя на математический язык: две четвертых, три четвертых. Верхняя цифра обозначает количество долей в такте: две или три. Нижняя цифра обозначает длительность этой доли. В пашем случае - это четверть. В размере две четверти звучат марш, польки. В размере три четверти - вальс. Эти воспоминания помогут ученикам связать новые знания с их опытом, что является необходимым условием достижения понимания.

При изучении действий второй ступени рекомендуется располагать различные случаи умножения на правильную дробь в порядке возрастания трудности: 1) умножение на целое число; 2) умножение целого числа на смешанное число; 3) умножение дроби на смешанное число; 4) умножение на правильную дробь; 5) умножение на дробь, в которой числитель равен знаменателю.

Чтобы показать, что число при делении на правильную дробь увс-

личивается, можно рассмотреть следующую ситуацию: 6: -.

Шесть кружков разрезали на четыре части, частей, конечно, стало больше, чем кружков.

Для введения сложных случаев предлагается задача на вычисление площади прямоугольника.

При любой последовательности изучения дробей есть свои плюсы и минусы.

Если десятичные дроби вводятся раньше обыкновенных, то положительным является то, что:

  • десятичные дроби могут быть введены при рассмотрении десятичной системы нумерации целых положительных чисел (первая разрядная единица после запятой - десятые доли единицы, а следующая - сотые...);
  • все арифметические действия проще выполняются для десятичных дробей;
  • имеют большее практическое применение, чем обыкновенные.

Отрицательным является то, что для обыкновенных дробей всю

теорию дробей надо строить заново, так как нельзя из частного случая делать общие выводы.

Если же обыкновенные дроби вводятся до десятичных, то следует учитывать, что:

  • десятичные - частный случай обыкновенных, следовательно, все правила действий - как следствия;
  • действия второй ступени для десятичных дробей как совокупности новых разрядных единиц (для действий первой ступени) невозможны;
  • действия над некоторыми обыкновенными проще (второй ступени);
  • основное свойство дроби только на основе общего понятия о дроби.

Для введения отрицательных чисел используются разные приемы.

Так, для обеспечения мотивации может быть использована проблемная ситуация, близкая опыту ребенка.

Робин Гуд, спасаясь от преследователей, проплыл вверх по реке а км, но, оказавшись перед бродом, вынужден был плыть вниз по реке и проплыл b км. Где он оказался от начала своего пути (на каком расстоянии от входа в реку)? Выписав выражение для нахождения неизвестного: х = а - Ь у необходимо рассмотреть все возможные соотношения между аик

1) а > к, 2) а = Ь; 3) а невыполнимо.

Также отрицательные числа могут быть введены:

  • через рассмотрение величин, которые имеют противоположный смысл (А. П. Киселев);
  • при рассмотрении характеристик изменений (увеличений и уменьшений) величин;
  • па основе графических представлений, отрицательные числа как отметки точек на оси (В. Л. Гончаров);
  • через задачу об изменении уровня воды в реке в течение двух суток (Д. К. Фаддеев и И. С. Соминский): во время сильных дождей уровень воды в реке поднялся на а см в течение суток. В течение следующих суток уровень воды понизился на b см. Какой будет уровень воды по истечении двух суток? (а - Ь);
  • при изображений расстояний на температурной шкале (А. Н. Барсуков).

Эти приемы могут использоваться и как один из аспектов мотивации. Еще одним аспектом является невозможность выполнения какого-либо действия, как в задаче выше.

Введя сравнение и действия над рациональными числами и свойства действий, мы получили числовое поле. Его дальнейшее расширение уже не может быть продиктовано невыполнением действий. Расширение понятия числа было вызвано геометрическими соображениями, а именно: отсутствием взаимно однозначного соответствия между множеством рациональных чисел и множеством точек числовой прямой. Для геометрии необходимо, чтобы каждая точка числовой прямой имела абсциссу, т.е. чтобы каждому отрезку при данной единице измерения соответствовало число, которое можно было бы принять за его длину.

К необходимости этого расширения приводит и невозможность извлечения корня из положительного числа, нахождение логарифма любого положительного числа при любом положительном основании. Эта цель достигается после того, как поле рациональных чисел (с помощью присоединения к нему системы иррациональных чисел) подвергается расширению до множества действительных чисел.

Лекция 49. Положительные рациональные числа

1. Рациональные числа. Понятие дроби.

2. Рациональное число как класс эквивалентных дробей.

3. Арифметические действия над рациональными числами. Сумма, произведение, разность, частное рациональных чисел. Законы сложения и умножения.

4. Свойства отношения «меньше» на множестве рациональных чисел.

Действительные числа - не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел, про­должается и сегодня - этого требует развитие различных наук и самой математики.

Знакомство учащихся с дробными числами происходит, как пра­вило, в начальных классах. Затем понятие дроби уточняется и расши­ряется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств ра­циональных и действительных чисел с множеством натуральных чи­сел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы.

Отметим особенность изложения материала данного параграфа, которая обусловлена как небольшим объемом курса математики для учителей начальных классов, так и его назначением: материал будет представлен во многом конспективно, часто без строгих доказа­тельств; более подробно будет изложен материал, связанный с рацио­нальными числами.

Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество Q+ положи­тельных рациональных чисел, затем показывается, как его можно расширить до множества R+ положительных действительных чисел, и, наконец, очень кратко описывается расширение множества R+ до множества R всех действительных чисел.

Понятие дроби

Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 128). При измерении оказалось, что отрезок х состоит из трех отрезков, равных е , и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом.

I-I-I-I-I-I-I-I-I-I-I-I-I-I-I

Однако если отрезок е разбить на 4 равные части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е . И тогда, говоря о длине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка х записывать в виде ∙Е , где Е - длина единичного отрезка е , а символ называть дробью.

В общем виде понятие дроби определяют так.

Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из т отрезков, равных п-ой части отрезка е, то длина отрезка х может быть представлена в виде ∙ Е, где символ называют дробью (и читают «эм энных»).

В записи дроби числа m и n - натуральные, m называется числителем, n - знаменателем дроби.

Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему.

Вернемся к рисунку 128, где показано, что четвертая часть отрезка уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е , которая укладывается в отрезке х целое число раз. Можно взять восьмую часть отрезка е , тогда отрезок х будет состоять из 28 таких частей и его длина будет выражаться дробью 28/8. Можно взять шестнадцатую часть отрезка е , тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью 56/16.

Вообще длина одного и того же отрезка х при заданном единич­ном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида , где к - натуральное число.

Теорема. Для того чтобы дроби и выражали длину одного и того же отрезка, необходимо и достаточно, чтобы выполнялось равенство mq = пр .

Доказательство этой теоремы мы опускаем.

Определение . Две дроби m/n и p/q называются равными, если mq= n p.

Если дроби равны, то пишут m/n = p/q .

Например, 17/3 = 119/21, так как 17∙21 = 119∙3 = 357, а 17/19 23/27, потому что 17∙27 = 459, 19∙23 = 437 и 459 ¹ 437.

Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину одного и того же отрезка.

Нам известно, что отношение равенства дробей рефлексивно, сим­метрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать.

Теорема. Равенство дробей является отношением эквивалентности.

Доказательство. Действительно, равенство дробей рефлексивно: = , так как равенство

m/n = m/n справедливо для любых натуральных чисел т и п. Равенство дробей симметрично: если = , то = , так как из тq= пр следует, что рп = qт (т, п, р, qÎN ).

Лекция №19

По математике

Введение

2. Понятие дроби

6. Действительные числа

Введение



Понятие дроби

В записи дроби

Дробь - называется правильной , если ее числитель меньше знаменателя, и неправильной , если ее числитель больше знаменателя или равен ему.

Вернемся к рисунку 2, где показано, что четвертая часть отрезка е уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е, которая укладывается в отрезке д: целое число раз. Можно взять восьмую часть отрезка е, тогда отрезок д: будет состоять из 28



28 таких частей и его длина будет выражаться дробью .

Можно взять шестнадцатую часть отрезка е, тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью .

Вообще длина одного и того же отрезка х при заданном единичном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида , где k- натуральное число.

Теорема . Для того чтобы дроби и выражали длину одного и того же отрезка, необходимо и достаточно, чтобы выполнялось равенство mq = nр.

Доказательство этой теоремы мы опускаем.

Определение . Две дроби и называются равными, если mq = np.

Если дроби равны, то пишут = .

Например, = , так как 17 · 21 = 119 · 3 = 357, а ≠ , потому что 17 · 27 = 459, 19 · 23 = 437 и 459≠437.

Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину одного и того же отрезка.

Нам известно, что отношение равенства дробей рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать.

Теорема . Равенство дробей является отношением эквивалентности.

Доказательство . Действительно, равенство дробей рефлексивно: = , так как равенство mn = mn справедливо для любых натуральных чисел тип. Равенство дробей симметрично: если = , то = , так как из mq = nр следует, что р n = qm (m, n, p, q N). Оно транзитивно: если = и = , то = . В самом деле, так как = , то mq = nр, а так как = , то ps = qr. Умножив обе части равенства mq = nр на s, а равенства рs = qr на n, получим mqs = nps и nps = qrs. Откуда mqs = qrn или ms = nr. Последнее равенство означает, что = . Итак, равенство дробей рефлексивно, симметрично и транзитивно, следовательно, оно является отношением эквивалентности.

Из определения равных дробей вытекает основное свойство дроби. Напомним его.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

На этом свойстве основано сокращение дробей и приведение дробей к общему знаменателю.

Сокращение дробей - это замена данной дроби другой, равной данной, но с меньшим числителем и знаменателем.

Если числитель и знаменатель дроби одновременно делятся только на единицу, то дробь называют несократимой. Например, - несократимая дробь, так как ее числитель и знаменатель делятся одновременно только на единицу, т.е. D(5, 17) =1.

Приведение дробей к общему знаменателю - это замена данных дробей равными им дробями, имеющими одинаковые знаменатели. Общим знаменателем двух дробей и является общее кратное чисел n и q, а наименьшим общим знаменателем - их наименьшее кратное К(n, q).

Задача. Привести к наименьшему общему знаменателю и .

Решение. Разложим числа 15 и 35 на простые множители: 15 = 3·5, 35 = 5·7. Тогда К(15, 35) = 3·5·7 = 105. Поскольку 105= 15·7 = 35·3,то = = , = = .

Действительные числа

Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби мри измерении длины отрезка.

Пусть х- отрезок, длину которого надо измерить, е- единичный отрезок. Длину отрезка х обозначим буквой X, а длину отрезка е - буквой Е. Пусть отрезок х состоит из n отрезков, равных е, и отрезка х 1 , который короче отрезка е (рис. 3), т.е.

n·Е < X < (n + 1) ·Е. Числа n и n+ 1 есть приближенные значения длины отрезка х при единице длины Е с недостатком и с избытком с точностью до 1.

Чтобы получить ответ с большей точностью, возьмем отрезок е 1 - десятую часть отрезка е и будем укладывать его в отрезке х 1 . При этом возможны два случая.

1) Отрезок е 1 уложился в отрезке х 1 точно n раз. Тогда длина и отрезка х выражается конечной десятичной дробью:

X = ·Е= ·Е. Например, X = 3,4·Е.

2) Отрезок х 1 оказывается состоящим из n отрезков, равных е 1 , и отрезка х 2 , который короче отрезка е 1 . Тогда ·Е<Х ·Е, где и

Приближенные значения длины отрезка х с недостатком и с избытком с точностью до 0,1.

Ясно, что во втором случае процесс измерения длины отрезка х можно продолжать, взяв новый единичный отрезок е 2 -сотую часть отрезка е.

На практике этот процесс измерения длины отрезка на каком-то этапе закончится. И тогда результатом измерения длины отрезка будет либо натуральное число, либо конечная десятичная дробь. Если же представить этот процесс измерения длины отрезка в идеале (как и делают в математике), то возможны два исхода:

1) На k-том шагу процесс измерения окончится. Тогда длина отрезка х выразится конечной десятичной дробью вида .

2) Описанный процесс измерения длины отрезка х продолжается бесконечно. Тогда отчет о нем можно представить символом , который называют бесконечной десятичной дробью.

Как убедиться в возможности второго исхода? Для этого достаточно произвести измерение длины такого отрезка, для которого известно, что его длина выражена, например, рациональным числом 5-. Если бы оказалось, что в результате измерения длины такого отрезка получается конечная десятичная дробь, то это означало бы, что число 5 можно представить в виде конечной десятичной дроби, что невозможно: 5 = 5,666....

Итак, при измерении длин отрезков могут получаться бесконечные десятичные дроби. Но всегда ли эти дроби периодические? Ответ на этот вопрос отрицателен существуют отрезки, длины которых нельзя выразить бесконечной периодической дробью (т.е. положительным рациональным числом) при выбранной единице длины. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.

Теорема . Если единицей длины является длина стороны квадрата, то длина диагонали этого квадрата не может быть выражена положительным рациональным числом.

Доказательство . Пусть длина стороны квадрата выражается числом 1. Предположим противное тому, что надо доказать, т.е., что длина диагонали АС квадрата ABCD выражается несократимой дробью . Тогда по теореме Пифагора, выполнялось бы равенство 1 2 +1 2 = . Из него следует, что m 2 = 2п 2 . Значит, m 2 - четное число, тогда и число m -четно (квадрат нечетного числа не может быть четным). Итак, m = 2р. Заменив в равенстве m 2 = 2n 2 число m на 2р, получаем, что 4р 2 = 2n 2 , т.е. 2р 2 = n 2 . Отсюда следует, что n 2 четно, следовательно, n - четное число. Таким образом, числа m и n чётны, значит, дробь можно сократить на 2, что противоречит предположению о её несократимости. Установленное противоречие доказывает, что если единицей длины является длина стороны квадрата, то длину диагонали этого квадрата нельзя выразить рациональным числом.

Из доказанной теоремы следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной единице длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.

Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональных чисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные непериодические десятичные дроби - это и есть положительные иррациональные числа.

Мы пришли к понятию положительного иррационального числа через процесс измерения длин отрезков. Но иррациональные числа можно получить и при извлечении корней из некоторых рациональных чисел. Так, , , - это иррациональное числа. Иррациональными являются также tg5, sin 31, числа π = 3,14..., е = 2,7828... и другие

Множество положительных иррациональных чисел обозначают символом J + .

Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R + . Таким образом, Q + J + = R + . При помощи кругов Эйлера эти множества изображены на рисунке 4.

Любое положительное действительное число может быть представлено бесконечной десятичной дробью - периодической (если оно является рациональным), либо непериодической (если оно является иррациональным).

Действия над положительными действительными числами сводятся к действиям над положительными рациональными числами.

Сложение и умножение положительных действительных чисел обладает свойствами коммутативности и ассоциативности, а умножения дистрибутивно относительно сложения и вычитания.

С помощью положительных действительных чисел можно выразить результат измерения любой скалярной величины: длины, площади, массы и т.д. Но на практике часто нужно выразить числом не результат измерения величины, а ее изменение. Причем ее изменение может происходить различно - она может увеличиваться, уменьшаться или оставаться неизменной. Поэтому, чтобы выразить изменение величины, кроме положительных действительных чисел нужны иные числа, а для этого необходимо расширить множество R + , присоединив к нему число 0 (нуль) и отрицательные числа.

Лекция №19

По математике

Тема: «О расширении множества натуральных чисел»

Введение

2. Понятие дроби

3. Положительные рациональные числа

4. Множество положительных рациональных чисел как расширение множества натуральных чисел

5. Запись положительных рациональных чисел в виде десятичных дробей

6. Действительные числа

Введение

Большинство применений математики связано с измерением величин. Однако для этих целей натуральных чисел недостаточно: не всегда единица величины укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди пришли еще в глубокой древности: измерение длин, площадей, масс и других величин привело сначала к возникновению дробных чисел - получили рациональные числа, а в V в до н.э. математиками школы Пифагора было установлено, что существуют отрезки, длину которых при выбранной единице длины нельзя выразить рациональным числом. Позднее, в связи с решением этой проблемы, появились числа иррациональные. Рациональные и иррациональные числа назвали действительными. Строгое определение действительного числа и обоснование его свойств было дано в XIX в.

Взаимосвязи между различными множествами чисел (N, Z, Q и R) можно изобразить наглядно при помощи кругов Эйлера (рис. 1).

Действительные числа - не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел, продолжается и сегодня - этого требует развитие различных наук и самой математики.

Знакомство учащихся с дробными числами происходит, как правило, в начальных классах. Затем понятие дроби уточняется и расширяется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы.

Отметим особенность изложения материала данного параграфа, которая обусловлена как небольшим объемом курса математики для учителей начальных классов, так и его назначением: материал будет представлен во многом конспективно, часто без строгих доказательств; более подробно будет изложен материал, связанный с рациональными числами.

Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество Q + положительных рациональных чисел, затем показывается, как его можно расширить до множества R+ положительных действительных чисел, и, наконец, очень кратко описывается расширение множества R+ до множества R всех действительных чисел.

Понятие дроби

Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 2). При измерении оказалось, что отрезок х состоит из трех отрезков, равных е, и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом. Однако, если отрезок е разбить на 4 равные части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е.

И тогда, говоря о длине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка х записывать в виде ·Е, где Е - длина единичного отрезка е, а символ - называть дробью.

В общем виде понятие дроби определяют так.

Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из m отрезков, равных n -ой части отрезка е, то длина отрезка х может быть представлена в виде ·Е, где символ - называют дробью (и читают «эм энных»).

В записи дроби числа m и n- натуральные, m называется числителем, n - знаменателем дроби.

Похожие статьи
 
Категории