Что такое лунное затмение и как его наблюдать? История солнечных и лунных затмений Тема урока: Движение и фазы Луны.

11.03.2024

Стационарные наблюдения обычно используются при проведении в особо сложных условиях при строительстве важных сооружений. Причем, стационарне наблюдение применяют как на этапе предпроектных изысканий, так и в последующих этапах данного процесса. В том случае, если есть опасность возникновения опасных инженерно-геологических процессов, данный вид наблюдений проводят уже непосредственно в процессе строительства или эксплуатации готовых зданий и сооружений. Этот процесс еще называют локальным мониторингом компонентов геологической среды.
Проведение стационарных наблюдений обеспечивает получение количественно-качественных характеристик изменения локальных компонентов среды в пространстве и времени. Этих данных обычно бывает достаточно для оценки или прогноза любых изменений геологических условий на исследуемой территории, которые возможны в будущем. Выбор проектных решений и обоснование необходимых защитных процессов также обусловливается результатами стационарных наблюдений.

Такие наблюдения чаще всего проводят на специально подготовленных пунктах сети для наблюдения. Часть пунктов необходимо использовать при наблюдениях уже после окончания строительства. Для наиболее эффективного осуществления стационарных наблюдений обычно используют геофизические режимные исследования. Это измерения, которые проводятся с периодической частотой в одних и тех же пунктах и по одинаковым профилям, измерения со специальными приемниками и датчиками и наблюдения, которые проводятся на гидрогеологических скважинах.

Организация сети пунктов наблюдений за поверхностными водными объектами

Для проведения мониторинга вод суши организуются:

Стационарная сеть пунктов наблюдений за естественным составом и загрязнением поверхностных вод;

Специализированная сеть пунктов для решения научно-исследовательских задач;

Временная экспедиционная сеть пунктов.

В основе организации и проведения наблюдений за качеством поверхностных вод лежат следующие принципы: комплексность и систематичность наблюдений, согласованность сроков их проведения с характерными гидрологическими ситуациями, определение показателей качества воды едиными методами. Соблюдение этих принципов достигается установлением программ контроля (по физическим, химическим, гидробиологическим и гидрологическим показателям) и периодичности проведения контроля, выполнением анализа проб воды по единым или обеспечивающим требуемую точность методикам (Вильдяев, 1999).

Сеть гидрохимических наблюдений должна охватывать

в пространстве:

По возможности все водные объекты, расположенные на территории изучаемого бассейна;

Всю длину водотока с определением влияния наиболее крупных его притоков и сброса сточных вод в него;

Всю акваторию водоема с определением влияния на него наиболее крупных притоков и сброса в него сточных вод;

во времени:

Все фазы гидрологического режима (весеннее половодье, летнюю межень, летние и осенние дождевые паводки, ледостав, зимнюю межень);

Различные по водности годы (многоводные, средние по водности и маловодные);

Суточные изменения химического состава воды;

Катастрофические сбросы сточных вод в водные объекты (Вильдяев, 1999).

Виды наблюдений за качеством поверхностных вод ОГСНК

В рамках ОГСНК проводят:

Наблюдения за уровнем загрязненности поверхностных вод по физическим, химическим, гидрологическим и гидробиологическим показателям в режимных пунктах;

Наблюдения, предназначенные для решения специальных задач.

Каждый из этих видов наблюдений осуществляется в результате:

Предварительных (рекогносцировочных) наблюдений и исследований на водных объектах или их участках;

Систематических наблюдений на водных объектах в выбранных пунктах (Вильдяев, 1999).

25. Пункты наблюдений за загрязнением поверхностных вод, правила их установки. Категории пунктов наблюдений за качеством водоемов.

Основным принципом организации наблюдений за качеством водных объектов является их комплексность. Она предусматривает согласованную программу работ по гидрологии, гидрохимии и гидробиологии, обеспечивающих наблюдения за качеством воды по физическим, химических и гидробиологическим показателям. Необходимым условием является синхронность всех систем наблюдения и согласованность сроков их проведения. Наблюдения за качеством воды ведутся по специальным программам, выбор которых зависит от категории пункта наблюдения. Периодичность работ по гидрохимическим и гидробиологическим параметрам также определяется категорией пункта наблюдения. Выбор программы контроля качества воды связан с использованием водотока или водоема, химическим составом сточных вод и той информацией, которая требуется водопользователю. Пункты наблюдений за качеством воды водотоков и водоемов подразделяются на 4 категории. Расположение пунктов контроля регламентируется специальными правилами наблюдений за качеством воды. Пункты первой категории устанавливаются на средних и больших вототоках и водоемах, имеющих важное хозяйственное значение:

В городах и промышленных зонах с населением более 1 млн. жителей;

В местах зимовья и нереста ценных видов промысловых рыб;

В местах организованного сброса сточных вод, где постоянно наблюдается высокая степень загрязненности воды;

В районах, где повторяются аварийные сбросы загрязняющих веществ;

В городах с населением от 0,5 до 1 млн. жителей;

На предплотинных участках рек, важных для рыбного хозяйства;

В местах сброса дренажных вод с орошаемых территорий и сточных промышленных вод;

При пересечении реками государственной границы РФ;

В районах со средней загрязненностью воды.

В городах с населением менее 0,5 млн. жителей;

На замыкающих участках больших и средних рек;

В устьях загрязненных притоков больших рек и водоемов;

В местах сброса сточных вод с низкой загрязненностью воды.

На незагрязненных участках водотоков и водоемов;

На водных объектах, расположенных на территориях национальных парков и государственных заповедников.

Самые значимые астрономические явления, которые можно увидеть на планете Земля

Солнечное затмение - астрономическое явление, которое заключается в том, что Луна закрывает полностью или частично Солнце от наблюдателя на Земле. Иначе говоря, в своем движении вместе с Землей вокруг Солнца Луна часто заслоняет звезды созвездий, по которым проходит лунный путь. Периодически Луна частично или полностью заслоняет Солнце — происходят солнечные затмения. Полное солнечное затмение происходит примерно один раз в полтора года. Но территория, на которой можно наблюдать его с Земли, очень мала. По одной и той же точке тень Луны может проходить только один раз в 200-300 лет, а значит, увидеть это захватывающее зрелище вряд ли получится и за целую жизнь.

Лунное затмение

Лунное затмение - затмение, которое наступает, когда Луна входит в конус тени, отбрасываемой Землёй. Во время затмения (даже полного) Луна не исчезает полностью, а становится тёмно-красной. Этот факт объясняется тем, что Луна даже в фазе полного затмения продолжает освещаться. Частота лунных затмений для какого-либо определенного места Земли выше частоты солнечных только потому, что они видны со всего ночного полушария Земли. При этом продолжительность полной фазы солнечного затмения на Луне может достигать 2,8 часа.

Северное сияние

Полярное сияние (северное сияние ) - свечение верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра. Ответ на вопрос, что же это такое, первым нашел Михаил Ломоносов. Проведя бесчисленное количество опытов, он высказал предположение об электрической природе этого явления. Ученые, продолжившие изучение этого феномена, на основе опытов подтвердили правильность его гипотезы. При наблюдении с поверхности Земли полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.

Парад планет

Парад планет - астрономическое явление, при котором некоторое количество планет Солнечной системы оказывается по одну сторону от Солнца в небольшом секторе. При этом они находятся более или менее близко друг к другу на небесной сфере.

  • Малый парад - астрономическое явление, во время которого четыре планеты оказываются по одну сторону от Солнца в небольшом секторе. К этим планетам относятся: Венера, Марс, Юпитер, Сатурн, Меркурий.
  • Большой парад - астрономическое явление, во время которого шесть планет оказываются по одну сторону от Солнца в небольшом секторе. К ним относятся: Земля, Венера, Юпитер, Марс, Сатурн, Уран.

Мини-парад планет с участием четырёх планет происходит чаще, а мини-парады планет с участием трёх планет можно наблюдать ежегодно (или даже два раза в году), однако условия их видимости не одинаковы для различных широт Земли.

Метеоритный дождь

Метеоритный дождь (железный дождь, каменный дождь, огненный дождь) - множественное падение метеоритов вследствие разрушения крупного метеорита в процессе падения на Землю. При падении одиночного метеорита образуется кратер. При выпадении метеоритного дождя образуется кратерное поле. Следует разделять понятия метеорный поток и метеоритный дождь . Метеорный поток состоит из метеоров, которые сгорают в атмосфере и не достигают земли, а метеоритный дождь - из метеоритов, которые выпадают на землю. Раньше не отличали первые от вторых и оба эти явления называли «огненный дождь».

Земля во Вселенной

Наблюдения лунных затмений

Так же как и солнечные, лунные затмения происходят сравнительно редко, и в то же время каждое затмение характеризуется своими особенностями. Наблюдения лунных затмений позволяют уточнять орбиту Луны, дают сведения о верхних слоях земной атмосферы.

Программа наблюдений лунного затмения может состоять из следующих элементов: определение яркости затененных частей лунного диска по видимости деталей лунной поверхности при наблюдении в 6-кратный признанный бинокль или телескоп с малым увеличением; визуальные оценки яркости Луны и ее цвета как невооруженным глазом, так и в бинокль (телескоп); наблюдения в телескоп с диаметром объектива не менее 10 см при 90-кратном увеличении на протяжении всего затмения кратеров Геродот, Аристарх, Гримальди, Атлас и Риччиоли, в области которых могут иметь место цветовые и световые явления; регистрация при помощи телескопа моментов покрытия земной тенью некоторых образований на лунной поверхности (список этих объектов приводится в книге «Астрономический календарь. Постоянная часть»); определение при помощи фотометра блеска поверхности Луны при различных фазах затмения.

Наблюдения искусственных спутников Земли и влияние Солнца на жизнь на Земле

При наблюдении искусственных спутников Земли отмечают путь движения спутника на звездной карте и время его прохождения около заметных ярких звезд. Время должно регистрироваться с точностью до 0,2с по секундомеру. Яркие спутники можно фотографировать.

Солнечное излучение -- электромагнитное и корпускулярное -- вот тот могучий фактор, который играет огромную роль в жизни Земли как планеты. Солнечный свет и солнечное тепло создали условия для формирования биосферы и продолжают поддерживать ее существование. С удивительной чуткостью все земное -- и живое и неживое -- реагирует па изменения солнечного излучения, на его своеобразную и сложную ритмику. Так было, так есть и так будет до тех пор, пока человек не сумеет внести свои коррективы в солнечно-земные связи.

Сравним Солнце со... струной. Это позволит уяснить Физическую суть ритмики Солнца и отражение этой ритмики и истории Земли.

Вы оттянули середину струны и отпустили ее. Колебания струны, усиленные резонатором (декой инструмента), породили звук. Состав этого звука сложный: ведь колеблется, как известно, не только вся струна в целом, но одновременно и ее части. Струна в целом порождает основной тон. Половинки струны, колеблясь быстрее, издают более высокий, по менее сильный звук -- так называемый первый обертон. Половинки половинок, то есть четверти струны, в свою очередь рождают еще более высокий и еще более слабый звук -- второй обертон и так далее. Полное звучание струны складывается из основного тона и обертонов, которые в разных музыкальных инструментах придают звуку различный тембр, оттенок.

По гипотезе известного советского астрофизика профессора М.С. Эйгенсона, когда-то, миллиарды лет назад, в недрах Солнца начал действовать тот самый протон-протонный цикл ядерных реакций, который поддерживает лучеиспускание Солнца и в современную эпоху; переход к этому чиклу, вероятно, сопровождался какой-то внутренней перестройкой Солнца. От прежнего состояния равновесия оно скачкообразно перешло к новому. И при этом скачке Солнце зазвучало», как струна. Слово «зазвучало» следует понижать, конечно, в том смысле, что в Солнце, в его исполинской массе, возникли какие-то ритмические колебательные процессы. Начались циклические переходы от активности пассивности и обратно. Возможно, эти сохранившиеся до наших дней колебания и выражаются в циклах солнечно активности.

Внешне, по крайней мере для невооруженного глаза, Солнце кажется всегда одним и тем же. Однако за этим внешним постоянством скрываются относительно медленные, но существенные изменения.

Прежде всего они выражаются в колебании числа солнечных пятен, этих локальных, более темных областей солнечной поверхности, где из-за ослабленной конвекции солнечные газы несколько охлаждены и потому вследствие контраста кажутся темными. Обычно астрономы подсчитывают для каждого момента наблюдений не общее число видимых на солнечном диске пятен, а так называемое число Вольфа, равное числу пятен, сложенному с удесятеренным числом их групп. Характеризуя суммарную площадь солнечных пятен, число Вольфа циклически меняется, достигая максимума в среднем через каждые 11 лет. Чем больше число Вольфа, тем выше солнечная активность. В годы максимума солнечной активности солнечный диск обильно усеян пятнами. Все процессы на Солнце становятся бурными. В солнечной атмосфере чаще образуются протуберанцы -- фонтаны раскаленного водорода с небольшой примесью других элементов. Чаще появляются солнечные вспышки, эти мощнейшие взрывы в поверхностных слоях Солнца, при которых «выстреливаются» в пространство плотные потоки солнечных корпускул -- протонов и других ядер атомов, а также электронов. Корпускулярные потоки -- солнечная плазма. Они несут с собою «вмороженное» в них слабое магнитное поле напряженностью 10 -4 эрстед. Достигая на вторые сутки, а то и раньше Земли, они будоражат земную атмосферу, возмущают магнитное поле Земли. Усиливаются и другие виды излучения Солнца, и на солнечную активность чутко отзывается Земля.

Если Солнце подобно струне, то циклов солнечной активности заведомо должно быть много. Какой-то из них, самый продолжительный и самый большой по амплитуде, задает «основной тон». Циклы меньшей продолжительности, то есть «обертоны», должны обладать все меньшей и меньшей амплитудой.

Разумеется, аналогия со струной неполная. Все колебания струны имеют строго определенные периоды, в случае Солнца можно говорить только о некоторых, лишь в среднем определенных циклах солнечной активности. И все-таки разные циклы солнечной активности должны быть в среднем пропорциональны друг другу. Как это ни удивительно, ожидаемое сходство Солнца и струны подтверждается фактами. Одновременно с одиннадцатилетним четко выраженным циклом на Солнце действует и другой, удвоенный, двадцатидвухлетний цикл. Он проявляется в смене магнитных полярностей солнечных пятен.

Каждое солнечное пятно -- сильный «магнит» напряженностью в несколько тысяч эрстед. Обычно пятна возникают близкими парами, причем линия, соединяющая центры двух соседних пятен, параллельна солнечному экватору. Оба пятна имеют разную магнитную полярность. Если переднее, головное (по направлению вращения Солнца) пятно обладает северной магнитной полярностью, то у следующего за ним пятна полярность южная.

Замечательно, что на протяжении каждого одиннадцатилетнего цикла все головные пятна разных полушарий Солнца имеют разную полярность. Раз в 11 лет, как по команде, совершается смена полярностей у всех пятен, а значит, первоначальное состояние повторяется через каждые 22 года. Мы не знаем, в чем причина этого явления, но реальность его несомненна.

Действует и утроенный, тридцатитрехлетний цикл. Пока неясно, в каких солнечных процессах он выражен, но его земные проявления давно известны. Так, например, особенно суровые зимы повторяются каждые 33--35 лет. Такой же цикл отмечен в чередовании сухих и влажных лет, колебаниях уровня озер и, наконец, в интенсивности полярных сияний -- явлений, заведомо связанных с Солнцем.

На спилах деревьев заметно чередование толстых и тонких слоев -- опять со средним интервалом в 33 года. Некоторые исследователи (например, Г. Лунгерсгаузен) считают, что тридцатитрехлетние циклы отражаются и в слоистости осадочных отложений. Во многих осадочных породах наблюдается микрослоистость, обусловленная сезонными изменениями. Зимние слои тоньше и более светлы вследствие обедненности органическим материалом, весенне-летние -- толще и темнее, так как они отлагались в период более энергичного проявления факторов выветривания пород и жизнедеятельности организмов. В морских и океанических биогенных отложениях такие явления тоже наблюдаются, так как в них накапливаются остатки микроорганизмов, которых в период вегетации всегда значительно больше, чем в зимний период (или в сухой период в тропиках). Таким образом, в принципе каждая пара микрослоев соответствует одному году, хотя бывает, что году могут соответствовать и две пары слоев. Отражение сезонных изменений в осадконакоплении прослеживается на протяжении почти 400 млн. лет -- с верхнего девона до наших дней, впрочем, с довольно длительными перерывами, занимающими иногда десятки миллионов лет (например, в юрском периоде, окончившемся около 140 млн. лет назад).

Сезонная слоистость связана с движением Земли вокруг Солнца, наклоном земной оси вращения относительно плоскости ее орбиты (или солнечного экватора, что практически одно и то же), характером циркуляции атмосферы и многим другим. Но как мы уже упоминали, некоторые исследователи видят в сезонной слоистости и отражение тридцатитрехлетних циклов солнечной активности, хотя если и можно говорить об этом, то только для так называемых ленточных отложений (в глинах и песках) эпохи последнего оледенения. Но если это так, то получается, что по меньшей мере миллионы лет действует удивительный и пока плохо нами изученный механизм солнечной активности. Следует все же еще раз заметить, что в геологических отложениях трудно вполне четко выделить какие-либо определенные циклы, связанные с солнечной активностью. Колебания климата в давние эпохи связаны прежде всего с изменениями на поверхности Земли, с увеличением или, наоборот, уменьшением общей площади морей и океанов -- этих главных аккумуляторов солнечного тепла. Действительно, ледниковым эпохам всегда предшествовала высокая тектоническая активность земной коры. Но эта активность в свою очередь (о чем будет сказано далее) может стимулироваться повышением солнечной активности. Об этом как будто говорят данные последних лет. Во всяком случае в этих вопросах еще много неясного, и потому дальнейшие рассуждения в этой главе следует рассматривать лишь как одну из возможных гипотез.

Еще в прошлом веке было замечено, что максимумы солнечной активности не всегда одинаковы. В изменениях величин этих максимумов намечается «вековой» или, точнее, 80-летний цикл, примерно в семь раз больший одиннадцатилетнего. Если «вековые» колебания солнечной активности сравнить с волнами, циклы меньшей продолжительности будут выглядеть как «рябь» на волнах.

«Вековой» цикл достаточно ясно выражен в частоте солнечных протуберанцев, колебаниях их средних высот и других явлениях на Солнце. Но особенно примечательны его земные проявления.

«Вековой» цикл ныне выражается в очередном потеплении Арктики и Антарктики. Через некоторое время потепление сменится похолоданием, и эти циклические колебания продолжатся неопределенно долго. «Вековые» колебания климата отмечены и в истории человечества, в летописях и других исторических хрониках. Порой климат становился необычно суровым, порой непривычно мягким. Так, например, в 829 году покрылся льдом даже Нил, а с XII по XIV век несколько раз замерзало Балтийское море. Наоборот, в 1552 году необычно теплая зима осложнила поход Ивана Грозного на Казань. Впрочем, в колебаниях климата замешан не только «вековой» цикл.

Если на графике изменений солнечной активности соединить прямыми точки максимумов и точки минимумов двух соседних «вековых» циклов, то окажется, что обе прямые почти параллельны, но наклонены к горизонтальной оси графика. Иначе говоря, намечается какой-то длительный, многовековой цикл, продолжительность которого удается установить лишь средствами геологии.

На берегах Цюрихского озера есть древние террасы -- высокие обрывы, в толще пород которых хорошо различимы слои разных эпох. И в этой слоистости осадочных пород, по-видимому, зафиксирован 1800-летний ритм. Тот же ритм заметен в чередовании илистых отложений, движении ледников, колебаниях увлажненности и, наконец, в циклических изменениях климата.

В книге советского географа профессора Г.К. Тушинского обобщено все известное о 1800-летнем цикле, а главное, прослежены его проявления в истории Земли. Здесь упомянем лишь кратко, что с 1800-летним циклом, вероятно, связаны периодические усыхания и увлажнения Сахары, сильное и длительное потепление Арктики, во время которого норманны заселили Гренландию (Зеленую землю) и открыли Америку. На волнах 1800-летнего цикла даже «вековой» цикл выглядит «рябью».

Если средняя температура Земли понизится всего на четыре-пять градусов, наступит новая ледниковая эпоха. Ледовые панцири покроют почти всю Северную Америку, Европу и большую часть Азии. Наоборот, повышение среднегодовой температуры Земли всего на два-три градуса заставит растаять ледяной покров Антарктиды, что повысит уровень Мирового океана на 70 м со всеми вытекающими отсюда катастрофическими последствиями (затоплением значительной части материков). Таким образом, небольшие колебания средней температуры Земли (всего в несколько градусов) могут бросить Землю в объятия ледников или, наоборот, большую часть суши покрыть океаном.

Хорошо известно, что в истории Земли много раз повторялись ледниковые эпохи и периоды, а между ними наступали эпохи потепления. Это были очень медленные, но грандиозные климатические изменения, на которые накладывались меньшие по амплитуде, но зато более частые и быстрые колебания климата, когда ледниковые периоды сменялись периодами теплыми и влажными.

Интервалы между ледниковыми эпохами или периодами можно характеризовать лишь в среднем: ведь и здесь действуют циклы, а не точные периоды. По исследованиям советского геолога Г.Ф. Лунгерсгаузена, ледниковые эпохи повторялись в истории Земли примерно каждые 180--200 млн. лет (по другим оценкам, 300 млн. лет). Ледниковые же периоды в пределах ледниковых эпох чередуются чаще, в среднем через несколько десятков тысяч лет. И все это зафиксировано в толще земной коры, в отложениях пород различного возраста.

Причины смены ледниковых эпох и периодов достоверно неизвестны. Предложено немало гипотез, объясняющих ледниковые циклы космическими причинами. В частности, некоторые ученые полагают, что, обращаясь вокруг центра Галактики с периодом в 180--200 млн. лет, Солнце вместе с планетами регулярно проходит через толщу плоскости рукавов Галактики, обогащенных пылевой материей, которая ослабляет солнечное излучение. Однако на галактическом пути Солнца не видно туманностей, которые могли бы играть роль темного фильтра. А главное, космические пылевые туманности столь разрежены, что, погрузившись в них, Солнце для земного наблюдателя осталось бы по-прежнему ослепительно ярким.

По гипотезе М.С. Эйгенсона, все циклические колебания климата, начиная от самых незначительных и кончая чередующимися ледниковыми эпохами, объясняются одной причиной -- ритмичными колебаниями солнечной активности. А так как в этом процессе Солнце подобно струне, то и в колебаниях земного климата должны проявиться все циклы солнечной активности -- от «основного» цикла в 200 или 300 млн. лет до самого короткого, одиннадцатилетнего. Сам же «механизм» воздействия Солнца на Землю в этом случае сводится к тому, что колебания солнечной активности тотчас же вызывают изменения геомагнитосферы и циркуляции земной атмосферы.

Если бы Земля не вращалась, циркуляция воздушных масс была бы предельно простой. В теплой тропической зоне Земли нагретый и потому менее плотный воздух поднимается вверх. Разность давлений у полюса и экватора заставляет эти воздушные массы устремиться к полюсу. Здесь, охладившись, они опускаются вниз, чтобы затем снова переместиться к экватору. Так в случае неподвижности Земли работала бы «тепловая машина» планеты.

Осевое вращение Земли и обращение ее вокруг Солнца осложняют эту идеализированную картину. Под действием так называемых кориолисовых сил (заставляющих реки, текущие в меридиональном направлении, в северном полушарии размывать правый берег, а в южном -- левый) воздушные массы циркулируют от экватора к полюсу и обратно по спиралям. В те же периоды, когда воздух у экватора нагревается особенно сильно, возникает волновая циркуляция воздушных масс. Спиралеобразное движение сочетается с волновым, и потому направление ветров постоянно меняется. К тому же неравномерный нагрев различных участков земной поверхности и рельеф усложняют и эту непростую картину. Если воздушные массы перемещаются параллельно земному экватору, циркуляция воздуха называется зональной, если вдоль меридиана -- меридиональной.

Для одиннадцатилетнего солнечного цикла доказано, что с повышением солнечной активности ослабляется зональная циркуляция и усиливается меридиональная. Земная «тепловая машина» работает энергичнее, усиливая теплообмен между полярными и экваториальной зонами. Если в стакан с холодной водой налить немного кипятку, то вода скорее нагреется в том случае, если ее размешать ложкой. По той же причине в периоды повышенной солнечной активности «взбудораженная» солнечным излучением атмосфера обеспечивает в среднем более теплый климат, чем в годы «пассивного» Солнца.

Сказанное верно для любых солнечных циклов. Но чем длиннее цикл, тем сильнее реагирует на него земная атмосфера, тем значительнее меняется климат Земли.

«Космическая причина ледниковых или, лучше, холодных эпох,-- пишет М.С. Эйгенсон,-- никак не может заключаться в снижении температуры. Дело обстоит «лишь» в падении интенсивности меридионального воздухообмена и в обусловленном этим падением росте меридионального термического градиента...»

Поэтому физической первоосновой климатических различий является общая циркуляция атмосферы.

Роль солнечных ритмов в истории Земли весьма заметна. Общая циркуляция атмосферы предопределяет скорость ветров, напряженность водообмена между геосферами, а значит, и характер процессов выветривания. Солнце влияет, очевидно, и на скорость образования осадочных пород. Но тогда, как считает М.С. Эйгенсон, геологическим эпохам с повышенной общей циркуляцией атмосферы и гидросферы должны соответствовать мягкие, мало выраженные формы рельефа. Наоборот, в длительные эпохи пониженной активности Солнца земной рельеф должен приобретать контрастность.

С другой стороны, в холодные эпохи значительные ледовые нагрузки, по-видимому, стимулируют вертикальные движения в земной коре, то есть активизируют тектоническую деятельность. Наконец, давно уже известно, что в периоды солнечной активности усиливается и вулканизм.

Даже в колебаниях земной оси (в теле планеты), как это считает И.В. Максимов, сказывается одиннадцатилетний солнечный цикл. Это, по-видимому, объясняется тем, что активное Солнце перераспределяет воздушные массы земной атмосферы. Меняется, следовательно, и положение этих масс относительно оси вращения Земли, что вызывает ее незначительные, но все же вполне реальные перемещения и изменяет скорость вращения Земли. Но если изменения солнечной активности сказываются на всей Земле в целом, то тем заметнее должно быть воздействие солнечных ритмов на поверхностную оболочку Земли.

Всякие, особенно резкие, колебания в скорости вращения Земли должны вызывать натяжения в земной коре, перемещение ее частей, а это в свою очередь может привести к возникновению трещин, что стимулирует вулканическую деятельность. Так возможно (конечно, в самых общих чертах) объяснить связь Солнца с вулканизмом и землетрясениями.

Вывод ясен: понять историю Земли, не учитывая при этом влияния Солнца, вряд ли возможно. Надо при этом, однако, всегда иметь в виду, что воздействие Солнца лишь регулирует или возмущает процессы собственного развития Земли, подчиненного своим геологическим внутренним законам. Солнце вносит лишь некоторые «поправки» в эволюцию Земли, вовсе, конечно, не являясь при этом движущей силой этой эволюции.

Лунное затмение наступает, когда Луна (в фазе полнолуния) входит в конус тени, отбрасываемой Землёй. Диаметр пятна тени Земли на расстоянии 363 000 км (минимальное расстояние Луны от Земли) составляет около 2,5 диаметров Луны, поэтому Луна может быть затенена целиком. Лунное затмение может наблюдаться на половине территории Земли (там, где на момент затмения Луна находится над горизонтом). Вид затенённой Луны с любой точки наблюдения одинаков. Максимальная теоретически возможная продолжительность полной фазы лунного затмения составляет 108 минут; такими были, например, лунные затмения 13 августа 1859 года, 16 июля 2000 года.

В каждый момент затмения степень покрытия диска Луны земной тенью выражается фазой затмения Ф. Величина фазы определяется расстоянием 0 от центра Луны до центра тени. В астрономических календарях приводятся величины Ф и 0 для разных моментов затмения.

Если Луна попадает в полную тень Земли только частично, наблюдается частное затмение . При нём часть Луны является тёмной, а часть, даже в максимальной фазе, остаётся в полутени и освещается солнечными лучами.

Вокруг конуса тени Земли имеется полутень - область пространства, в которой Земля заслоняет Солнце лишь частично. Если Луна проходит область полутени, но не входит в тень, происходит полутеневое затмение . При нём яркость Луны уменьшается, но незначительно: такое уменьшение практически незаметно невооружённым глазом и фиксируется только приборами. Лишь когда Луна в полутеневом затмении проходит вблизи конуса полной тени, при ясном небе можно заметить незначительное потемнение с одного края лунного диска.

Затмеваемая Луна мерцает в небе над памятником Спасителю мира в Сан-Сальвадоре, Сальвадор, 21 декабря 2010 года.

(Jose CABEZAS/AFP/Getty Images)

При наступлении полного затмения Луна приобретает красноватый или коричневатый оттенок. Цвет затмения зависит от состояния верхних слоев земной атмосферы, поскольку только прошедший сквозь нее свет освещает Луну во время полного затмения. Если сравнить снимки полных лунных затмений разных лет, то легко увидеть разницу в цвете. Например, затмение 6 июля 1982 года было красноватым, а затмение 20 января 2000 года имело коричневый оттенок. Такие цвета Луна приобретает во время затмений благодаря тому, что земная атмосфера больше рассеивает красные лучи, поэтому никогда нельзя наблюдать, скажем, синего или зеленого лунного затмения. Но полные затмения различаются не только цветом, но и яркостью. Да, именно, яркостью, и существует специальная шкала для определения яркости полного затмения, называемая шкалой Данжона (в честь французского астронома Андре Данжона, 1890–1967).

Градация шкалы Данжона имеет 5 пунктов. 0 - затмение очень темное (Луна еле угадывается на небе), 1 - затмение темно-серое (на Луне заметны детали), 2 - затмение серое с коричневым оттенком, 3 - светлое красно-коричневое затмение, 4 - очень светлое медно-красное затмение (Луна видна отчетливо, и различимы все основные детали поверхности).

Если бы плоскость лунной орбиты лежала в плоскости эклиптики, то лунные (как и солнечные) затмения происходили бы ежемесячно. Но большую часть времени Луна проводит либо выше, либо ниже плоскости земной орбиты ввиду того, что плоскость лунной орбиты имеет пятиградусный наклон к плоскости орбиты Земли. Как следствие, естественный спутник Земли попадает в ее тень лишь два раза в году, то есть в то время, когда узлы лунной орбиты (точки ее пересечения с плоскостью эклиптики) находятся на линии Солнце-Земля. Тогда в новолуние происходит солнечное затмение, а в полнолуние - лунное.

Каждый год происходят как минимум два лунных затмения, однако в связи с несовпадением плоскостей лунной и земной орбит, их фазы отличаются. Затмения повторяются в прежнем порядке каждые 6585⅓ дней (или 18 лет 11 дней и ~8 часов - период, называемый сарос); зная, где и когда наблюдалось полное лунное затмение, можно точно определить время последующих и предыдущих затмений, хорошо просматриваемых в этой местности. Эта цикличность часто помогает точно датировать события, описываемые в исторических летописях. История лунных затмений уходит далеко в прошлое. Первое полное лунное затмение зарегистрировано в древнекитайских летописях. С помощью расчетов удалось вычислить, что оно произошло 29 января 1136 г. до н. э. Еще три полных лунных затмения зафиксированы в «Альмагесте» Клавдия Птолемея (19 марта 721 г. до н. э., 8 марта и 1 сентября 720 г. до н. э.). В истории часто описываются лунные затмения, что очень помогает установить точную дату того или иного исторического события. Например, военачальник афинской армии Никий испугался начавшегося полного лунного затмения, в армии началась паника, что привело к гибели афинян. Благодаря астрономическим расчетам удалось установить, что это произошло 27 августа 413 г. до н. э.

В средние века полное лунное затмение оказало Христофору Колумбу большую услугу. Его очередная экспедиция на острове Ямайке оказалась в тяжелом положении, продукты питания и питьевая вода были на исходе, и людям грозила голодная смерть. Попытки Колумба получить пищу у местных индейцев окончились безрезультатно. Но Колумб знал, что 1 марта 1504 г. должно произойти полное лунное затмение, и под вечер он предупредил вождей живших на острове племен, что он похитит у них Луну, если они не доставят на корабль продукты и воду. Индейцы лишь посмеялись и ушли. Но, как только началось затмение, индейцев охватил неописуемый ужас. Продукты и вода были немедленно доставлены, а вожди на коленях умоляли Колумба вернуть им Луну. Колумб, естественно, не мог «отказать» в этой просьбе, и вскоре Луна, к восторгу индейцев, снова засияла на небе. Как видим, обычное астрономическое явление может быть весьма полезным, а знание астрономии просто необходимо путешественникам.

Наблюдения лунных затмений могут принести некоторую научную пользу, так как дают материал для изучения структуры земной тени и состояния верхних слоев атмосферы Земли. Любительские наблюдения частных лунных затмений сводятся к точной регистрации моментов контактов, фотографированию, зарисовкам и описанию изменений яркости Луны и лунных объектов в затмившейся части Луны. Моменты касания лунного диска с земной тенью и схождения с нее фиксируются (с возможно большей точностью) по часам, выверенным по сигналам точного времени. Необходимо отмечать и контакты земной тени с крупными объектами на Луне. Наблюдения можно проводить невооруженным глазом, в бинокль или телескоп. Точность наблюдений, естественным образом, увеличивается при наблюдении в телескоп. Для регистрации контактов затмения необходимо установить на телескопе максимальное для него увеличение и направить его на соответствующие точки касания диска Луны с земной тенью за несколько минут до предсказанного момента. Все записи заносятся в тетрадь (журнал наблюдений затмения).

Если в распоряжении любителя астрономии имеется фотоэкспонометр (прибор, измеряющий яркость объекта), то с его помощью можно построить график изменения яркости лунного диска в течение затмения. Для этого надо установить экспонометр так, чтобы его чувствительный элемент был направлен точно на диск Луны. Показания прибора снимаются через каждые 2-5 минут, и записываются в таблицу тремя столбцами: номер замера яркости, время и яркость Луны. По окончании затмения, используя данные таблицы, можно будет вывести график изменения яркости Луны во время этого астрономического явления. В качестве экспонометра можно использовать любой фотоаппарат, где имеется система автоматического экспонирования со шкалой экспозиций.

Фотографирование явления можно производить любым фотоаппаратом, имеющим съемный объектив. При съемке затмения объектив из фотоаппарата удаляется, а корпус аппарата прилаживается к окулярной части телескопа при помощи переходника. Это будет съемка с окулярным увеличением. Если объектив вашего фотоаппарата несъемный, то можно просто приставить аппарат к окуляру телескопа, но качество такого снимка будет хуже. При наличии у вашего фотоаппарата или видеокамеры функции Zoom необходимость в дополнительных увеличительных средствах, как правило, отпадает, т.к. размеры Луны при максимальном увеличении такой камеры достаточны для съемок.

Тем не менее, лучшее качество снимков получается при фотографировании Луны в прямом фокусе телескопа. В такой оптической системе объектив телескопа автоматически становится объективом фотоаппарата, только с большим фокусным расстоянием.

Похожие статьи