Ученые нашли жизнь на других планетах! Есть ли жизнь на других планетах? Существование жизни на других планетах.

24.04.2024

Вероятность существования жизни на других планетах определяется масштабами Вселенной. То есть чем больше Вселенная, тем больше вероятность случайного возникновения жизни где-нибудь в ее отдаленных уголках. Так как согласно современным классическим моделям Вселенной она является бесконечной в пространстве, кажется, что вероятность существования жизни на других планетах стремительно растет. Подробнее данный вопрос будет рассмотрен ближе к концу статьи, так как начать придется с представления самой инопланетной жизни, определение которой довольно размыто.

По некой причине до недавнего времени у человечества сложилось четкое представление инопланетной жизни в форме серых гуманоидов с большими головами. Однако, современные кинофильмы, литературные произведения, следуя за развитием самого научного подхода к этому вопросу, все более выходят за рамки указанных выше представлений. Действительно, Вселенная довольно разнообразна и, учитывая сложную эволюцию человеческого вида, вероятность возникновения схожих форм жизни на разных планетах с разными физическими условиями – крайне мала.

Прежде всего следует выйти за рамки представления жизни таковой, какой она есть на Земле, так как мы рассматриваем жизнь на других планетах. Оглядываясь вокруг, мы понимаем, что все известные нам земные формы жизни являются именно такими не просто так, а в силу существования на Земле некоторых физических условий, пару из которых мы и рассмотрим далее.

Гравитация


Первым и наиболее явным земным физическим условием является . Чтобы гравитация на другой планете была точно такой же, ей понадобится точно такая же масса и такой же радиус. Чтобы это было возможно, вероятно другая планета должна состоять из тех же элементов, что и Земля. Для этого потребуется также ряд других условий, в результате соблюдения которых вероятность обнаружения такого «клона Земли» стремительно падает. По этой причине, если мы намеренны отыскать все возможные внеземные формы жизни, следует предполагать о возможности их существования на планетах с несколько иной гравитацией. Конечно, для гравитации должен быть определен некоторый диапазон, такой чтобы удерживать атмосферу и при этом на расплющить все живое на планете.

В границах этого диапазона возможны самые различные формы жизни. Прежде всего гравитация влияет на рост живых организмов. Вспоминая самую известную гориллу в мире – Кинг-Конга, следует отметить, что он не выжил бы на Земле, так как умер бы под давлением собственного веса. Причиной этому служит закон квадрата-куба, согласно которому с увеличением тела в два раза, его масса увеличивается в 8 раз. Поэтому если мы рассматриваем планету с пониженной гравитацией – следует ожидать обнаружение форм жизни в крупных размерах.

Также от силы гравитации на планете зависит крепость скелета и мышц. Вспоминая еще один пример из мира животных, а именно самое большое животное – синего кита, отметим, что в случае попадания его на сушу кит задыхается. Однако происходит это не потому, что они задыхаются словно рыбы (киты – млекопитающие, а посему они дышат не жабрами, а легкими, как и люди), а потому, что сила тяжести мешает их легким расширяться. Из этого следует, что в условиях повышенной гравитации человек обладал бы более крепкими костьми, способными удержать массу тела, более крепкими мышцами, способными противодействовать силе тяжести, и меньшим ростом для понижения собственно самой массы тела согласно закону квадрата-куба.

Перечисленные физические характеристики тела, зависящие от гравитации, — это лишь наши представления о влиянии силы тяжести на организм. На самом деле гравитация может определять значительно больший диапазон параметров тела.

Атмосфера

Другим глобальным физическим условием, определяющим форму живых организмов, является атмосфера. Прежде всего наличием атмосферы сознательно сузим круг планет с возможностью жизни, так как ученым не удается представить организмы, способные выживать без вспомогательных элементов атмосферы и при убийственном влиянии космической радиации. Поэтому предположим, что планета с живыми организмами должна обладать атмосферой. Сперва рассмотрим атмосферу с содержанием кислорода, к которому мы все так привыкли.

Рассмотрим к примеру насекомых, размер которых явно ограничен из-за особенностей дыхательной системы. Она не включает легкие и состоит из тоннелей трахей, выходящих наружу в виде отверстий — дыхалец. Подобная тип транспортировки кислорода не позволяет иметь насекомым массу более 100 грамм, так как при больших размерах теряет свою эффективность.

Каменноугольный период (350-300 млн. лет до нашей эры) характеризовался повышенным содержанием кислорода в атмосфере (на 30-35%), и присущие тому времени животные могут Вас удивить. А именно, гигантские дышащие воздухом насекомые. К примеру, стрекоза Meganeura могла иметь размах крыльев более 65-ти см, скорпион Pulmonoscorpius достигать 70-ти см, а многоножка Arthropleura — 2,3 метра в длину.

Таким образом, становится очевидно влияние концентрации кислорода в атмосфере на диапазон различных форм жизни. Кроме того, наличие кислорода в атмосфере не есть твердым условием для существования жизни, так как человечеству известны анаэробы – организмы, способные жить без потребления кислорода. Тогда если влияние кислорода на организмы столь высоко, какова же будет форма жизни на планетах со совершенно другим составом атмосферы? – сложно представить.

Так перед нами возникает немыслимо большой набор форм жизни, которые могут нас ожидать на другой планете, учитывая лишь два перечисленных выше фактора. Если же рассматривать и другие условия, вроде температуры или атмосферного давления, то разнообразие живых организмов выходит за рамки восприятия. Но и в этом случае ученые не боятся делать более смелые предположения, определяемые в альтернативной биохимии:

  • Многие убеждены, что все формы жизни могут существовать лишь при наличии в их составе углерода, так как это наблюдается на Земле. Данное явление в свое время Карл Саган назвала как «углеродный шовинизм». Но на самом деле основным строительным элементом инопланетной жизни может быть совсем не углерод. Среди альтернатив углероду ученые выделяют кремний, азот и фосфор или азот и бор.
  • Фосфор – также один из основных элементов, составляющих живой организм, так как входит в состав нуклеотидов, нуклеиновых кислот (ДНК и РНК) и прочих соединений. Однако, в 2010-м году астробиолог Фелиса Вольф-Саймон обнаружила бактерию, во всех клеточных компонентах которой фосфор заменяется мышьяком, к слову токсичным для всех других организмов.
  • Вода – один из важнейших компонентов для жизни на Земле. Однако, и воду можно заменить иным растворителем, согласно исследованиям ученых, это может быть аммиак, фтороводорот, цианистый водород и даже серная кислота.

Зачем же мы рассматривали вышеописанные возможные формы жизни на других планетах? Дело в том, что с увеличением разнообразия живых организмов размываются границы самого термина жизни, который, к слову, до сих пор не имеет явного определения.

Понятие инопланетной жизни

Так как предметом данной статьи есть не разумные существа, а живые организмы, следует определить понятие «живого». Как оказалось, это достаточно сложная задача и существует более 100 определений жизни. Но, дабы не углубляться в философию, пойдем по следам ученых. Наиболее широкое понятие жизни должны иметь химики и биологи. Исходя из привычных признаков жизни, вроде размножения или питания, к живым существам можно приписать некоторые кристаллы, прионы (инфекционные белки) или вирусы.

Доподлинное определение границы между живым и неживым организмом должно быть сформулировано прежде, чем возникнет вопрос о существовании жизни на других планетах. Биологи считают такой пограничной формой – вирусы. Сами по себе, не взаимодействуя с клетками живых организмов, вирусы не обладают большинством привычных нам характеристик живого организма и представляют из себя лишь частицы биополимеров (комплексы органических молекул). Например, они не имеют обмена веществ, для их дальнейшего размножения потребуется какая-то клетка-хозяин, принадлежащая другому организму.

Таким образом можно условно провести грань между живыми и неживыми организмами проходит через обширный слой вирусов. То есть обнаружение вирусоподобного организма на другой планете может стать как подтверждением существования жизни на других планетах, так и еще одним полезным открытием, однако не подтверждающим указанное предположение.

Согласно вышесказанному, большинство химиков и биологов склоняются к тому, что основным признаком жизни есть репликация ДНК – синтез дочерней молекулы на основе родительской молекулы ДНК. Имея такие взгляды на инопланетную жизнь, мы значительно отдалились от уже избитых образов зеленых (серых) человечков.

Однако проблемы определения объекта как живого организма могут возникнуть не только с вирусами. Учитывая указанное ранее разнообразие возможных видов живых существ, можно представить ситуацию, когда человек столкнется с некоторой инопланетной субстанцией (для простоты представления – размеров порядка человека), и поставит вопрос о жизни этой субстанции, — поиск ответа на этот вопрос может оказаться таким же затруднительным, как и в случае с вирусами. Данная проблема просматривается в произведении Станислава Лема «Солярис».

Внеземная жизнь в Солнечной системе

Kepler — 22b-планета с возможной жизнью

Сегодня критерии поиска жизни на других планетах довольно строгие. Среди них в приоритете: наличие воды, атмосферы, и температурных режимов, схожих с земными. Для обладания указанными характеристиками планета должна находиться в так называемой «обитаемой зоне звезды» — то есть на определенном расстоянии от звезды, в зависимости от типа этой звезды. Среди наиболее популярных можно отметить: Глизе 581 g, Kepler-22 b, Kepler-186 f, Kepler-452 b и другие. Однако, сегодня о наличии жизни на таких планетах можно лишь гадать, так как слетать к ним удастся совсем не скоро, в силу огромного расстояния до них (одна из ближайших Глизе 581 g, до которой 20 световых лет). Поэтому вернемся в нашу Солнечную систему, где на самом деле также есть признаки неземной жизни.

Марс

Согласно критериям существования жизни, некоторые из планет Солнечной системы обладают подходящими условиями. Например, на Марсе был обнаружен сублимирующийся (испаряющийся) – шаг на пути к обнаружению жидкой воды. Кроме того, в атмосфере красной планеты был найден метан – известный продукт жизнедеятельности живых организмов. Таким образом даже на Марсе есть вероятность существования живых организмов, хоть и простейших, в определенных теплых местах с менее агрессивными условиями, вроде полярных шапок.

Европа

Небезызвестный спутник Юпитера – – довольно холодное (-160 °C — -220 °C) небесное тело, покрытое толстым слоем льда. Однако, ряд результатов исследований (движение коры Европы, наличие индуцированных токов в ядре) все больше приводят ученых к мысли о существовании жидкого водного океана под поверхностными льдами. Причем в случае существования, размеры этого океана превышают размеры мирового океана Земли. Разогрев этого жидкого водяного слоя Европы скорее всего происходит посредством гравитационного влияния , которое сжимает и растягивает спутник, вызывая приливы. В результате наблюдения за спутником были также зафиксированы признаки выбросов водяного пара из гейзеров со скоростью примерно 700 м/с на высоту до 200 км. В 2009-м году американским ученым Ричардом Гринбергом было показано, что под поверхностью Европы имеется кислород в объемах, достаточных для существования сложных организмов. Учитывая другие указанные данные о Европе, можно с уверенностью предположить о возможности существования сложных организмов, пусть подобных рыбам, которые обитают ближе ко дну подповерхностного океана, где судя по всему расположены гидротермальные источники.

Энцелад

Наиболее многообещающим местом для обитания живых организмов является спутник Сатурна – . Несколько похожий на Европу, этот спутник все же отличается от всех других космических тел Солнечной системы тем, что на нем обнаружена жидкая вода, углерод, кислород и азот в форме аммиака. Причем результаты зондирования подтверждаются реальными фотографиями огромных фонтанов воды, бьющих из трещин ледяной поверхности Энцелада. Собрав воедино полученные свидетельства, ученые утверждают о наличии подповерхностного океана под южным полюсом Энцелада, температура которого лежит в диапазоне от -45°C до +1°C. Хотя существуют оценки, согласно которым температура океана может достигать даже +90. Даже если температура океана не высока, все же нам известны рыбы, живущие в водах Антарктики при нулевой температуре (Белокровные рыбы).

Помимо этого, данные, полученные аппаратом , и обработанные учеными из института Карнеги, позволили выяснить щелочность среды океана, которая составляет 11-12 pH. Данный показатель является довольно благоприятным для зарождения, а также поддержания жизни.

Вот мы и подобрались к оценке вероятности существования инопланетной жизни. Все написанное выше несет оптимистичный характер. Исходя из широкого разнообразия земных живых организмов, можно сделать вывод, что даже на самой «суровой» планете-двойнике Земли может возникнуть живой организм, пусть и совсем отличный от привычных для нас. Даже исследуя космические тела Солнечной системы, мы находим закоулки, казалось, мертвого мира, не похожего на Землю, в которых все же существуют благоприятные условия для углеродных форм жизни. Еще сильнее укрепляет наши убеждения о распространенности живого во Вселенной возможность существования не углеродных форм жизни, а неких альтернативных, использующих вместо углерода, воды и других органических веществ некоторые иные вещества, вроде кремния или аммиака. Таким образом допустимые условия для жизни на другой планете значительно расширяются. Умножив это все на размеры Вселенной, конкретнее – на количество планет, получим достаточно высокую вероятность возникновения и поддержания инопланетной жизни.

Есть лишь одна проблема, которая возникает перед астробиологами, равно как и перед всем человечеством – мы не знаем, как возникает жизнь. То есть как и откуда взяться хотя бы простейшим микроорганизмам на других планетах? Вероятность зарождения самой жизни, даже при благоприятных условиях, мы оценить не можем. А потому оценка вероятности существования живых инопланетных организмов крайне затруднительна.

Если переход от химических соединений к живым организмам определить, как естественное биологическое явление, вроде самовольного объединения комплекса органических элементов в живой организм, то вероятность возникновения такого организма высока. В таком случае можно сказать, что на Земле так или иначе появилась бы жизнь, имея она в наличии те органические соединения, которые она имела, и соблюдая те физические условия, которые она соблюдала. Однако, ученые так и не выяснили природу этого перехода и факторов, которые могут на него влиять. Потому среди факторов, влияющих на само возникновение жизни, может быть что угодно, вроде температуры солнечного ветра или расстояния до соседней звездной системы.

Предполагая, что для возникновения и существования жизни в пригодных для жизни условиях требуется лишь время, и никаких более неизученных взаимодействий с внешними силами, можно сказать, что вероятность обнаружить живые организмы в нашей галактике – довольно высока, эта вероятность существует даже в нашей Солнечной системе. Если же рассматривать Вселенную в целом, то исходя из всего вышенаписанного, можно с большой уверенностью сказать, что жизнь на других планетах есть.

Знаете ли вы, что в нашей солнечной системе есть планета, запасы жидкой воды на которой, скорее всего, превышают её объёмы на нашей родной Земле? А ведь это является главным критерием, по которому учёные уже в течение многих лет ищут жизнь на других планетах, так как у нас на Земле везде, где есть вода, есть и жизнь. Само название этой планеты нам очень хорошо знакомо, ведь эта та самая финикийская принцесса и возлюбленная Зевса Европа, в честь которой и назван континент, на котором живет большая часть наших читателей. И именно так называется один из 4 крупнейших спутников Юпитера, которые давно изучаются учёными, так как по размерам они вполне сопоставимы с отдельными планетами. Спутник Юпитера Европа является самым маленьким из них и по диаметру он почти такой же, как наша Луна. Однако внутри Европа, скорее всего, скрывает такое огромное количество тайн, которые после своего открытия грозят перевернуть все представления человека о Вселенной.

Возможна ли жизнь на Европе?

Впервые в свой телескоп Европу увидел Галилео Галилей в 1610 г. Однако настоящее внимание к себе эта планета привлекла только в конце ХХ века, когда к Юпитеру отправился уже космический аппарат Галилео. В 1997 г. он подошел на расстояние в 200 км к этому спутнику, сделал серию снимков, а также провел все необходимые измерения. Так как спутник обладает гладкой и белой поверхностью, то учёные давно высказывали гипотезу о том, что она образована изо льда, однако до полёта Галилео точно узнать это не удавалось. Снимки, сделанные этим аппаратом, смогли подтвердить эту гипотезу, и благодаря им выяснилось, что на поверхности Европы лёд относительно молодой, а на его поверхности практически отсутствуют кратеры. Это означает, что подо льдом находится жидкость, которая регулярно выходит на поверхность и заполняет обрезывающиеся кратеры и неровности.

Одним из главных открытий, сделанных во время пролёта Галилео возле Европы, стало обнаружение на её поверхности трещин, которые по внешнему виду практически ничем не отличаются от тех, которые можно наблюдать, например, в Арктике. Эти наблюдения могли означать только одно: на спутнике Юпитера Европе есть места, где поверхностный лёд относительно тонкий, и в результате воздействия различных сил он трескается, а вода из-под него вытекает на поверхность. Таким образом, следы жизнедеятельности организмов, если таковые имеются на Европе, можно обнаружить не только, если забуриться глубоко под лёд, но и даже недалеко от поверхности. Разрастание таких трещин приводит к образованию на Европе целых хребтов, возвышающихся на несколько сот метров.

Во время полёта Галилео вокруг Европы также было обнаружено магнитное поле, которое свидетельствует о наличии внутри планеты солёного океана. По некоторым оценкам, его толщина может достигать 100 км, что делает запасы воды на Европе поистине колоссальными. Это настолько заинтересовало учёных, что на сегодня в мире разрабатывается сразу несколько миссий к Европе, целью которых является обнаружение признаков на ней жизни, а может быть и первых в истории человеческой цивилизации инопланетян. Из них одной из наиболее перспективных является миссия Jupiter Icy Moon Explorer, проект которой сейчас разрабатывается при участии NASA, ЕКА и Роскосмоса. При благоприятном стечении обстоятельств аппарат JUICE достигнет Европы в 2030 г., после чего он должен будет сделать серию фотоснимков, а также провести детальное обследование её поверхности с высоты менее 500 км.

Поиски жизни на Ганимеде

Возможно, к миссии JUICE присоединится ещё один аппарат, разрабатываемый учёными в России. Точнее это целых два аппарата с общим названием «Лаплас - П»: один из них должен обследовать окрестности системы Юпитера, а второй совершить посадку на одном из его спутников. Только вот речь идёт уже не о Европе, а о спутнике Ганимеде – самом большом среди спутников Юпитера с диаметром в полтора раза большим, чем у нашей Луны. По мнению многих российских исследователей, этот спутник является ещё лучшим кандидатом на поиски внеземной жизни, чем Европа. Он находится на большем удалении от Юпитера, а значит – меньше подвержен разрушительному воздействию радиации, исходящей от газового гиганта. Сам спутник Ганимед представляет собой большое ледяное тело, которое из-за воздействия гравитации и подповерхностных сил вполне могло образовать жидкий океан, не меньший чем на Европе. При этом на поверхности спутника есть немало других геологических достопримечательностей, которые учёным и хотелось бы изучить.

Будем надеяться, что поиски жизни на других планетах не будут остановлены по причине очередного дефицита финансирования, так как открывать тайны Вселенной, по моему скромному мнению, куда полезнее для человечества, чем тратить деньги на танки и авианосцы, предназначенные для уничтожения себе подобных.

Экономист, аналитик. Учился в спецгимназии, затем в Донецком национальном
университете экономики и торговли по специальности «Финансы». Закончил магистратуру и
аспирантуру, после чего проработал несколько лет научным сотрудником в одном из
институтов Национальной академии наук Украины. Параллельно с этим получил второе
высшее образование по специальности «Философия и религиоведение». Подготовил к
защите кандидатскую диссертацию по экономике. Пишу научные и публицистические статьи с
2010 года. Увлекаюсь экономикой, политикой, наукой, религией и многим другим.

Если под словом «человек» подразумевать определенный вид животного, вид, который еще Линней назвал Homo sapiens, т. е. человек разумный, то на вопрос, поставленный в заголовке, можно дать в самой категорической форме ответ отрицательный.

Такого человека, который водится на Земле, на других планетах быть не может. Разумные существа могут находиться на планетах, но совершенно невероятно, чтобы эти существа имели строение и внешний вид человека. Человек на Земле произошел от своих обезьяноподобных предков, эти предки произошли от низших обезьян, обезьяны от полуобезьян, и так далее. В числе предков человека, начиная с самого простейшего одноклеточного животного, или амебы, мы можем насчитать огромное количество самых разнообразных животных. Для того, чтобы на планете появилось существо, похожее на человека, надо, чтобы это существо в своем развитии прошло точно через те же ступени, через какие на земле шло развитие человека. Если хотя бы один из этих бесчисленных предков хотя бы немного отличался от соответствующего предка человека, то и тогда в конечном результате развития не может получиться существо, совершенно похожее на человека.

Даже на Земле, где всюду условия более или менее однородны, биологи не допускают возможности самостоятельного возникновения одного и того же вида животного в двух разных местах земного шара. Если волк водится в Европе и Северной Америке, то не потому, что это животное зародилось самостоятельно в каждой из этих стран, а потому, что волк народился от своих предков в Старом Свете, а потом по перешейку, который соединял Азию с Америкой, переселился в Америку. Точно так же и все расы людей, несмотря на большую разницу между ними во внешнем виде, биологи производят от одного человеческого вида и от одной расы, потомки которой расселились по всей Земле. Тем более невероятно, чтобы одна и та же человеческая порода получилась, с одной стороны, на Земле, а с другой - на какой-нибудь планете, где условия жизни совсем иные.

Разумные существа на планетах могут быть, но как они устроены, об этом ничего определенного мы сказать не можем. Несомненно, только, что у них должно быть большое скопление нервной ткани, т. е. мозга, и, стало быть, большая голова, иначе они не могли бы быть разумными. Могут быть у них и четыре и две ноги, могут быть и крылья, но у них непременно должны быть органы, приспособленные к схватыванию, т. е. нечто в роде наших рук. Без таких органов, т. е. без рук, разум этих существ не мог бы получить надлежащего применения и не мог бы развиваться. Вследствие этого первые проблески разума должны были бы скоро заглохнуть.

Кратко о статье: Различные исследования раз за разом приводят нас к мысли, что никаких «зеленых человечков» в пределах Солнечной системы нет. Привычные нам белковые формы жизни, вполне возможно, могли бы развиться на далеких планетах, соответствующих определенным и достаточно жестким условиям. Каким? Читайте в материале Михаила Попова.

Кто там?

Жизнь на других планетах

Червяк: «Знать бы только, есть ли червяки на других планетах, - и ничего больше мне не надо».

Карел Чапек

Есть ли жизнь на других планетах? Это главный вопрос, с которого пошла вся научная фантастика. Высшие, разумные формы чужой жизни чаще всего изображаются человекообразными. А вот облик инопланетных животных, как правило, создается по принципу «чем чуднее, тем лучше». Но за всем этим буйством фантазии скрывается один простой факт - мы не имеем ни малейшего представления о том, какие создания живут в других мирах и могут ли они существовать вообще. А если могут, то где и как?

Одни ученые смотрят в космос через телескоп и терпеливо ждут, пока им оттуда помашут ручкой. Другие крутят пальцами у висков и заявляют, что высшей формой инопланетной органики может быть разве что молекула спирта. Третьи протирают этим самым спиртом зонды, чтобы «не занести земные бактерии в хрупкую марсианскую экосистему». Кому же верить?

Обитаемое Солнце

Кто первым задумался о существовании жизни на других планетах? Вероятнее всего, это были древние греки. Фалес и его ученик Анаксимандр в 7-6 веках до нашей эры верили в бесконечность вселенной и выводили отсюда мысль о бесконечности обитаемых миров (хотя Аристотель и Птолемей позднее разработали теорию геоцентризма - «Земля в центре мира» - и на многие века похоронили идею поиска иной жизни).

Талмуд солидарен с греками и говорит о 18000 обитаемых миров. Кроме того, иудаизм учит, что внеземные существа лишены свободы воли и не похожи на нас с вами точно так же, как морские твари отличаются от сухопутных.

В средневековой Европе подобные идеи, естественно, не одобрялись. Джон Мильтон в «Потерянном рае» осторожно предполагал, что инопланетная жизнь должна быть двуполой. Ученые были смелее. Чешский астроном Антонин Мария Ширлеус (17 век) говорил, что «...если на Юпитере есть жители, то они должны быть крупнее и красивее обитателей Земли, исходя из пропорций этих двух сфер».

К 18-19 векам почти все образованные люди были убеждены, что на планетах солнечной системы, и, вероятно, других звездных систем есть жизнь. В это верили и Бенджамин Франклин, и Эммануил Кант. Некоторые энтузиасты доказывали, что обитаемо даже Солнце!

Шумиха улеглась лишь в 20 веке, когда аппараты, отправленные к Марсу и Венере, никого там не встретили. Научная программа SETI (поиск внеземного разума) почти за 40 лет своего существования тоже не принесла результатов. Интерес людей к «братьям по разуму» существенно охладел и утратил масштабность. Сейчас ученые спорят уже не столько о зеленых человечках, сколько об инопланетных микробах и бактериях.

Это интересно
  • В настоящее время за пределами Солнечной системы найдено 173 планеты.
  • Углерод - удивительное вещество. У него наивысшая среди всех других элементов таблицы Менделеева температура плавления/сублимации. Он принимает множество обликов (от алмаза до графита). Из него можно изготавливать глюкозу и цианид. Алмазные нанотрубки - самая твердая структура, известная человеку. В соединении с кислородом углерод образует углекислый газ, без которого невозможно существование растений. В соединении с водородом получается углеводородное топливо, а с железом - сталь.
  • Метеорит ALH84001 является центральным элементом в сюжете романа Дэна Брауна «Точка обмана» (2001).
  • Не так давно в атмосфере Марса был обнаружен метан - быстрораспадающийся газ, который может означать присутствие живых организмов (так как вулканов на Марсе нет).
  • В фантастике кровь инопланетян часто имеет медную основу и зеленый цвет. На самом деле подобные «пришельцы» есть и на Земле. Кровь моллюсков (например, осьминогов), высших ракообразных и некоторых паукообразных основана не на «железном» гемоглобине, а на «медном» гемоцианине. В окисленном виде она имеет синий цвет, а в чистом - прозрачна.

Химия и жизнь

Жизнь в ее земном варианте основана на двух веществах - воде и углероде . Последний отличается способностью вступать во множество соединений с другими элементами (около 10 миллионов вариантов), а вода, в свою очередь, служит оптимальной средой для возникновения новых видов органики. Именно поэтому многие склонны считать, что инопланетные формы жизни наверняка окажутся водно-углеродными.

В качестве альтернативы углероду чаще всего предлагается кремний - элемент, по своим свойствам напоминающий углерод. Увы, сложные кремниевые соединения обычно не отличаются стабильностью и вряд ли могут стать полноценными участниками биохимических процессов в водной среде.

Впрочем, кремний легко может оказаться важной составной частью какой-либо сложной органической структуры. Пример из реальной жизни - микроскопические диатомовые водоросли , имеющие твердый кремниевый панцирь.

Азот и фосфор - также кандидаты на звание «первоосновы» неземной жизни. Каждый из них в отдельности мало подходит для этого, но в соединениях друг с другом они способны образовывать длинные молекулярные цепочки, которые (теоретически) могут развиться в какую-нибудь недружелюбную космическую гадость.

Атмосфера Земли содержит примерно 80% азота, однако в чистом виде этот газ почти инертен. Некоторые растения (к примеру, бобовые) научились использовать чистый молекулярный азот, отдавая его на переработку бактериям-симбионтам, живущим в их корнях, но в целом для органики он бесполезен.

Жидкий аммиак - интересная альтернатива воде. Он обладает некоторыми похожими свойствами (легко растворяет органику и некоторые металлы) и в нем могут протекать самые различные химические реакции.

Аммиачная биосфера будет выглядеть очень необычно. Дело в том, что земная жизнь существует в довольно узком диапазоне температур. При нормальном давлении температура кипения жидкого аммиака колеблется от -78 до -33 градусов по шкале Цельсия. На таком холоде скорость химических реакций резко падает, что сводит к минимуму вероятность появления даже самых примитивных органических соединений.

Аммиак может сохранять жидкое состояние и при «обычной» температуре, однако для этого требуется давление примерно в 60 атмосфер, которое также не идет на пользу инопланетной эволюции. Впрочем, Айзек Азимов - биохимик по образованию - считал, что сложные липиды (жировые вещества) вполне могут заменять собой протеиновые белки и стать основой для жизни даже в таких агрессивных средах, как жидкий метан или водород.

Иголка в стоге сена

Вряд ли можно с достаточной долей уверенности рассуждать об условиях возникновения жизни в ее азотной или любой другой экзотической форме. Зато о белковых существах мы знаем достаточно много, чтобы попытаться хотя бы заочно «обнаружить» их среди звезд.

Прописка во вселенной: звезде с планетой - кандидатом на «обитаемость» лучше находиться подальше от спиральных рукавов галактик, где чаще всего вспыхивают сверхновые. Нежелательна и близость к центру Галактики - источнику мощной радиации. Кроме того, предполагается, что в ядрах большинства галактик находятся сверхмассивные черные дыры.

В этом смысле Солнцу повезло - оно занимает практически идеальную круглую орбиту на расстоянии 8 килопарсеков от центра Галактики, неподалеку от спирали Ориона.

Звезда должна быть богатой на металлы. Больше всего таких светил находится около ядра нашей Галактики, что в очередной раз говорит о маловероятности существования планеты земного типа в ее рукавах. Вокруг бедных, «неметаллических» звезд формируются лишь газовые гиганты.

Горячие звезды типа Сириуса или Веги - не самый удачный вариант. Их обитаемые зоны начинаются слишком далеко, чтобы там могли появиться «каменные» планеты. На большом расстоянии от светил обычно находятся газовые гиганты. Их спутники иногда подходят на роль «Новой Земли», однако ультрафиолетовое излучение горячих звезд так велико, что атмосферы этих небесных тел будут сильно ионизированы. Наконец, горячая звезда живет сравнительно недолго и превращается в красного гиганта (как Антарес), поглощая свои планеты.

С холодными звездами дела обстоят не лучше. Их обитаемая зона невелика, и шансов на то, что в нее попадут подходящие планеты, очень мало. Для жизни больше всего подходят планеты вокруг желтых звезд типа «G» - таких, как наше Солнце. К сожалению, в нашей Галактике подобных светил очень мало (около 5%). Примерно 90% звезд - холодные и тусклые красные карлики. К таковым относится наша «соседка» - Проксима Центавра, и еще 20 из 30 ближайших звезд. Так что поблизости от Солнца белковой жизни, скорее всего, нет.

Планета , как бы тривиально это ни звучало, должна быть не большой и не маленькой. Планеты с небольшой массой имеют очень слабую атмосферу (при давлении в 0,006 от земного вода уже не может становиться жидкой), они холодны и геологически мертвы.

Без тектонической активности не будут протекать химические реакции (например, по образованию атмосферы). Одним из факторов такой активности является массивный спутник типа нашей Луны, который, вдобавок, стабилизирует ось вращения планеты, а следовательно, и климат. Спутник будет принимать на себя часть астероидов (ученые также считают, что немалую защитную роль играют газовые гиганты, как наш Юпитер). Обязательно и наличие собственного магнитного поля - «зонтика» от радиации.

Планета должна вращаться вокруг солнца по круглой орбите. Вытянутые траектории станут причиной сезонных скачков температур. К примеру, Земля идет вокруг Солнца почти по ровному кругу (эксцентричность - 0,02). То же самое касается остальных планет Солнечной системы, кроме Плутона и Меркурия. Зато все известные планеты на других звездах движутся по эллиптическим орбитам (эксцентричность около 0,25). Углы наклона планетарной оси, отличные от земного (от 21 до 24 градусов), также говорят о слишком контрастном климате.

Правило «маленькая планета - мертвая планета» не относится к спутникам газовых гигантов. На Титане (спутник Сатурна) имеется плотная атмосфера. Спутники Юпитера также небезнадежны: Ио вулканически активна, а Европа покрыта слоем льда, под которым, возможно, есть соленое море.

Бороться и искать

Итоги? Органика земного типа на ближайших к нам звездах отсутствует, а насчет небелковой формы жизни люди будут теоретизировать еще очень долго - по крайней мере, до тех пор, пока не вырвутся за пределы Солнечной системы. В настоящее время нам остается лишь искать микроорганизмы на соседних планетах.

Самым доступным объектом исследований остается Марс. В декабре 1984 года в Антарктике обнаружили метеорит номер ALH84001, который совершенно точно прилетел с Марса примерно 15 миллионов лет назад (выброшен с его поверхности взрывом от падения крупного астероида). На срезе под электронным микроскопом обнаружились упорядоченные структуры, подозрительно похожие на окаменевшие бактерии. Это обстоятельство подстегнуло старые дискуссии о том, что жизнь на нашу планету была занесена извне, возможно, даже с Марса.

К величайшему сожалению, миссия Европейского космического агентства «Марс экспресс», предпринятая в 2003 году, частично провалилась. Исследовательский аппарат «Бигль 2», который должен был наконец-то доказать или опровергнуть наличие жизни на Марсе, разбился при посадке.

Немалые надежды возлагаются на Титан - одну из лун Сатурна. В 1997 году зонд «Гюйгенс» с аппарата «Кассини» посетил этот спутник и впервые передал на Землю подробную информацию о нем.

Еще интереснее на Европе (спутник Юпитера). Атмосфера у нее тонкая, кислородная. Температура на экваторе - минус 163 градуса Цельсия. Поверхность изрезанная, но высоких гор нет. Под небольшим слоем пыли скрыт ледяной покров толщиной до 100 километров. Но там, где действуют гейзеры горячей воды либо недавно падали крупные метеориты, находятся плоские ледяные линзы толщиной около 30 метров. А под ними - глубокий соленый океан, который никогда не замерзает из-за вулканической активности на дне. Ученые уже давно мечтают запустить буровой зонд в этот океан, ведь там могут обитать такие твари, которые не снились даже Лавкрафту!

Наконец, совсем недавно - 5 марта 2006 - ученые сообщили, что зонд «Кассини» обнаружил на спутнике Сатурна Энцеладе настоящие гейзеры холодной воды. Извергаясь, вода моментально замерзает. В условиях низкой гравитации куски льда выбрасываются вверх на сотни километров. Часть из них падает обратно, а часть включается в состав колец Сатурна.

Это реальность. А как насчет фантастики? Инопланетной жизни там с избытком. Герберт Уэллс пугал нас марсианским красным мхом. В Плоском мире Терри Пратчетта живут тролли - существа с кремниевой органикой, питающиеся камнями (для этого у них есть алмазные зубы). Грегори Бенфорд описывал жизнь на комете, активизирующуюся с ее приближением к Солнцу («Сердце кометы», 1986), а знаменитый астрофизик Фред Хойл, автор термина «Большой Взрыв», написал роман «Черное облако» (1957), в котором фигурировало огромное скопление космической пыли, обладавшее коллективным интеллектом.

В романе физика Роберта Форварда «Камелот 30К» на отдаленном астероиде в облаке Оорта (окраины Солнечной системы) существовала экосистема, основанная на фтороуглероде, и даже разумные существа, создавшие культуру вроде английской времен короля Артура. Тот же автор описывал и ядерную форму жизни, существующую на поверхности нейтронных звезд («Яйцо дракона», «Звездотрясение»). Но дальше всего шагнул Стивен Бакстер - в его цикле «Ксили» имелась фотонная жизнь, населявшая гравитационные колодцы звезд.

* * *

Очевидно только одно - высокоразвитых организмов на других планетах Солнечной системы, увы, нет. Скорее всего, если инопланетная жизнь и существует, то где-то очень-очень далеко. Она должна быть совершенно не похожа на земную органику, поэтому о ее облике мы можем фантазировать сколько угодно. Все равно не угадаем.

Поиск собратьев по разуму на далеких звездах - может быть, и неблагодарное, но, по крайней мере, достойное занятие. Ведь даже в шутке есть доля правды: «Чтобы человек жил с высоко поднятой головой, ему необходимо увлекаться астрономией».

Была ли жизнь на других планетах? Появляется все больше доказательств того, что Венера когда-то была обитаемой.

Если бы у вас была возможность вернуться обратно во времени на 3 миллиарда лет и приземлиться на любую планету в нашей Солнечной системе, то какое бы место вы выбрали? Землю, с ее бесплодными материками и непригодной для дыхания атмосферой? Или быть может промерзший насквозь Марс? А как на счет Венеры?

Вторая планета от Солнца
«Если Венера вращалась в прошлом быстрее, то скорее всего планета так и оставалась такой же безжизненной, какой она является сейчас»

Сейчас Венера представляется адом во плоти. Температура ее поверхности, только вдумайтесь, 464 градуса Цельсия. Однако три миллиарда лет назад эта планета, возможно, являлась наиболее подходящим местом обитания внутри Солнечной системы, или по крайней мере вторым, после Земли. Эта гипотеза витает в научном сообществе уже давно, однако благодаря новым климатическим моделям, созданным учеными из Института космических исследований имени Годдарда, у нас появились серьезные основания в нее поверить.

Эти модели показывают, что около 2 миллиардов лет назад Венера могла быть фактически курортной планетой. Умеренный земной климат, примлемая температура, жидкие океаны воды. Фактически идеальное место, если не считать повышенный, по сравнению с нынешним уровнем на Земле примерно на 40 процентов, уровень радиации. Модели эти построены с учетом разности скорости вращения Венеры.

« Если взять мир, похожий на Венеру, медленно вращающийся и находящийся в системе звезды типа Солнца, то этот мир вполне подойдет для существования жизни, особенно в океанах », - говорит Майкл Вэй, ведущий автор нового исследования, опубликованного на страницах журнала Geophysical Research Letters .

Уровень пригодности для обитания на Земле и Марсе постоянно изменялся в течение всей истории Солнечной системы. Геологические доказательства указывают на то, что Марс когда-то в далеком прошлом был более сырым, однако был ли на нем океан из жидкой воды, или же он постоянно был покрыт ледяными шапками - этот вопрос по-прежнему остается предметом многочисленных споров. Земля в свою очередь проходила стадии перерождения из парниковой теплицы в ледышку и обратно. Все это время в ее атмосфере накапливался кислород, что делало ее все более и более пригодной для обитания сложных форм жизни.

Потенциальная колыбель человечества

«Если взять мир, похожий на Венеру, медленно вращающийся и находящийся в системе звезды типа Солнца, то этот мир вполне подойдет для существования жизни, особенно в океанах»

Но, что насчет Венеры? Наш ближайший сосед и его уровень пригодности для обитания весьма незаслуженно привлекали меньше внимания ученых, по сравнению с Марсом.

Наш малый интерес к этой планете весьма вероятно связан с тем, какой перед нами предстает Венера сейчас: безжизненный мир, с непроницаемо плотной атмосферой, токсичными грозовыми облаками и атмосферным давлением в 100 раз выше, чем на Земле. Когда планета и ее атмосфера в течение нескольких секунд способна превратить один космический зонд за другим в расплавленный гуляш, то вполне понятно, почему люди весьма скептически настроены в ее пользу и решают переключить свое внимание на что-то другое.

Тем не менее, даже если Венера такая странная и ужасная сегодня, это не означает, что она всегда такой была. Дело в том, что абсолютно вся поверхность этой планеты изменилась в результате продолжительной вулканической активности около 700 миллионов лет назад. И мы не знаем, какой она была до этого времени. Измерение соотношения изотопов водорода в атмосфере Венеры показывает, что на планете когда-то было гораздо больше воды. Возможно ее было столько, что хватало на целые океаны.

Поэтому, пытаясь ответить на вопрос о том, была ли когда-то Венера обитаемой, Вэй и его коллеги сложили информацию с общей топографической базы данных, собранной с помощью космического аппарата «Магеллан», с данными об оценках запасов воды и уровнях солнечной радиации, свойственных для Венеры в прошлом. Вся эта информация была загружена в глобальные климатические модели, аналогичные тем, которые используются для моделирования и изучения климатических изменений на Земле.

Полученные результаты оказались весьма интригующими. Несмотря на тот факт, что древняя Венера около 2,9 миллиардов лет назад получала гораздо больше солнечного света, чем современная Земля, модели Вэя показали, что средняя температура на ее поверхности составляла всего 11 градусов Цельсия. Около 715 миллионов лет назад температура повысилась всего на 4 градуса. Другими словами, более 2 миллиардов лет температура на поверхности планеты подходила для существования жизни.

Электрические ветра Венеры

Согласно новым исследованиям, мощные «электрические ветра» на Венере могли стать причиной испарения воды из атмосферы планеты. Однако здесь есть одно «но». Эти цифры полностью зависят от прошлого Венеры, согласно которому, она обладает аналогичными топографическими и орбитальными характеристиками «нынешней версии» планеты. Когда Вэй заново сконфигурировал свои модели, но сделал Венеру возрастом 2,9 миллиардов лет более похожей на современную Землю, температура ее поверхности резко возросла.

« Мы хотели посмотреть, как изменение в топографии могло влиять на климат этого мира », - говорит Вэй.

Ученый отмечает, что причиной этому могут быть изменения в количестве рефлекторной поверхности Венеры, а также сдвиг атмосферной динамики. Еще одно интересное наблюдение связанно с вращением Венеры. В изначальных компьютерных моделях Венере возрастом 2,9 миллиарда лет Вэй задал скорость обращения равную нынешним 243 земным суткам. Как только ее период обращения сократили до 16 дней, планета сразу же «превратилась в пароварку». Связанно это с областями особой циркуляции атмосферы Венеры по обе стороны от экватора.

« Земля обладает несколькими областями циркуляции, так как наша планета быстро вращается. Однако если она будет крутится медленно, то области будет только две: одна на севере, другая на юге. И это в очень значительной степени изменит всю атмосферную динамику », - говорит Вэй.

Если Венера будет медленно крутиться, то прямо под гелиографическим местом светила (то есть ровно та точка поверхности, куда попадают солнечные лучи) будут образовываться огромные парниковые облака. Это фактически превратит Венеру в один гигантский солнечный отражатель. Если Венера будет крутиться быстрее, этого эффекта возникать не будет. Данное исследование не дает четкого ответа на вопрос о том, была ли Венера когда-то обитаемой. Однако оно дает представление о том, при каком сценарии она могла быть таковой. Стоит отметить, что скорость вращения планеты со временем может резко изменяться. Например, наша Земля замедляет свое вращение из-за гравитации Луны. Некоторые ученые предполагают, что Венера вращалась гораздо быстрее в прошлом. Однако выяснить это - задача крайне непростая. Наиболее подходящим вариантом решения являются наблюдения за компактными и похожими на Венеру планетами.

Загадка Венеры

Если предположить, что Венера несколько миллиардов лет назад действительно была пригодной для жизни планетой, то стоит задуматься о том, какая же катастрофа привела к тому, чем Венера является сейчас?

« Нам нужно собрать и проверить больше данных перед тем, как мы сможем сказать больше », - отвечает Вэй.

Ученый добавляет, что миры подобные Венере не должны априори рассматриваться, как необитаемые.

« Если говорить об обитаемой зоне звезды, то Венера обычно рассматривается за ее пределами », - говорит ученый.

« Для современной Венеры это замечание верно. Однако если похожий на Венеру мир находился бы у солнцеподобной звезды и при этом обладал более низкой скоростью вращения, то этот мир определенно бы подошел для существования жизни, особенно в океанах, если бы таковые имелись ».

Ученые считают, что и нынешняя Венера может содержать множество тайн о природе жизни на Земле. От метеоритов мы узнали, что между Марсом и Землей происходила передача материала, что в свою очередь заставило астробиологов задуматься о том, не могла ли Красная планета «засеять» Землю жизнью. Если аналогичное мнение справедливо в отношении Венеры, то данную планету тоже необходимо добавить в список потенциальных инкубаторов земной жизни. Удивительно, но мы по-прежнему не знаем, есть ли на Земле метеориты с Венеры. В первую очередь потому, что у нас не было еще возможности проанализировать венерианскую породу и сравнить ее с земной.

В общем и целом, мы не может сразу же отрицать возможность того, что родиной самых древних наших предков могла являться эта кислотная баня, которой сейчас является Венера.

« Вполне возможно, жизнь в Солнечной системе началась с Венеры и затем переселилась на Землю. А может и наоборот », - говорит Вэй.

Похожие статьи