Как решить неравенства с двумя переменными. Уравнения с двумя переменными и их геометрическое решение

15.03.2024

Видеоурок «Системы неравенств с двумя переменными» содержит наглядный учебный материал по данной теме. В урок включено рассмотрение понятия о решении системы неравенств с двумя переменными, примеров решения подобных систем графическим способом. Задача данного видеоурока - формировать умение учеников решать системы неравенств с двумя переменными графическим способом, облегчить понимание процесса поиска решений таких систем и запоминания метода решения.

Каждое описание решения сопровождается рисунками, которые отображают решение задачи на координатной плоскости. На таких рисунках наглядно показаны особенности построения графиков и расположения точек, соответствующих решению. Все важные детали и понятия выделены при помощи цвета. Таким образом, видеоурок является удобным инструментом для решения задач учителя на уроке, освобождает учителя от подачи стандартного блока материала для проведения индивидуальной работы с учениками.

Видеоурок начинается с представления темы и рассмотрения примера поиска решений системы, состоящей из неравенств x<=y 2 и у<х+3. Примером точки, координаты которой удовлетворяют условиям обеих неравенств, является (1;3). Отмечается, что, так как данная пара значений является решением обоих неравенств, то она является одним из множества решений. А все множество решений будет охватывать пересечение множеств, которые являются решениями каждого из неравенств. Данный вывод выделен в рамку для запоминания и указания на его важность. Далее указывается, что множество решений на координатной плоскости представляет собой множество точек, которые являются общими для множеств, представляющих решения каждого из неравенств.

Понимание сделанных выводов о решении системы неравенств закрепляется рассмотрением примеров. Первым рассматривается решение системы неравенств х 2 +у 2 <=9 и x+y>=2. Очевидно, что решения первого неравенства на координатной плоскости включают окружность х 2 +у 2 =9 и область внутри нее. Эта область на рисунке заполняется горизонтальной штриховкой. Множество решений неравенства x+y>=2 включает прямую x+y=2 и полуплоскость, расположенную выше. Данная область также обозначается на плоскости штрихами другого направления. Теперь можно определить пересечение двух множеств решений на рисунке. Оно заключено в сегменте круга х 2 +у 2 <=9, который покрыт штриховкой полуплоскости x+y>=2.

Далее разбирается решение системы линейных неравенств y>=x-3 и y>=-2x+4. На рисунке рядом с условием задания строится координатная плоскость. На ней строится прямая, соответствующая решениям уравнения y=x-3. Областью решения неравенства y>=x-3 будет область, расположенная над данной прямой. Она заштриховывается. Множество решений второго неравенства располагается над прямой y=-2x+4. Данная прямая также строится на той же координатной плоскости и область решений штрихуется. Пересечением двух множеств является угол, построенный двумя прямыми, вместе с его внутренней областью. Область решений системы неравенств заполнена двойной штриховкой.

При рассмотрении третьего примера описан случай, когда графиками уравнений, соответствующих неравенствам системы, являются параллельные прямые. Решить необходимо систему неравенств y<=3x+1 и y>=3x-2. На координатной плоскости строится прямая, соответствующая уравнению y=3x+1. Область значений, соответствующих решениям неравенства y<=3x+1, лежит ниже данной прямой. Множество решений второго неравенства лежит выше прямой y=3x-2. При построении отмечается, что данные прямые параллельны. Область, являющаяся пересечением двух множеств решений, представляет собой полосу между данными прямыми.

Видеоурок «Системы неравенств с двумя переменными» может применяться в качестве наглядного пособия на уроке в школе или заменить объяснение учителя при самостоятельном изучении материала. Подробное понятное объяснение решения систем неравенств на координатной плоскости может помочь подать материал при дистанционном обучении.

Пусть f(x,y) и g(x, y) - два выражения с переменными х и у и областью определения Х . Тогда неравенства вида f(x, y) > g(x, y) или f(x, y) < g(x, y) называется неравенством с двумя переменными .


Значение переменных х, у из множества Х , при которых неравенство обращается в истинное числовое неравенство, называется его решением и обозначается (x, y) . Решить неравенство - это значит найти множество таких пар.


Если каждой паре чисел (x, y) из множества решений неравенства поставить в соответствие точку М(x, y) , получим множество точек на плоскости, задаваемое этим неравенством. Его называют графиком данного неравенства . График неравенства обычно является областью на плоскости.


Чтобы изобразить множество решений неравенства f(x, y) > g(x, y) , поступают следующим образом. Сначала заменяют знак неравенства знаком равенства и находят линию, имеющую уравнение f(x,y) = g(x,y) . Эта линия делит плоскость на несколько частей. После этого достаточно взять в каждой части по одной точке и проверить, выполняется ли в этой точке неравенство f(x, y) > g(x, y) . Если оно выполняется в этой точке, то оно будет выполняться и во всей части, где лежит эта точка. Объединяя такие части, получаем множество решений.


Задача. y > x .


Решение. Сначала заменим знак неравенства знаком равенства и построим в прямоугольной системе координат линию, имеющую уравнение y = x .


Эта линия делит плоскость на две части. После этого возьмем в каждой части по одной точке и проверим, выполняется ли в этой точке неравенство y > x .


Задача. Решить графически неравенство
х 2 + у 2 £ 25.
















Рис. 18.



Решение. Сначала заменим знак неравенства знаком равенства и проведем линию х 2 + у 2 = 25. Это окружность с центром в начале координат и радиусом 5. Полученная окружность делит плоскость на две части. Проверяя выполнимость неравенства х 2 + у 2 £ 25 в каждой части, получаем, что графиком является множество точек окружности и части плоскости внутри окружности.

Пусть даны два неравенства f 1(x, y) > g 1(x, y) и f 2(x, y) > g 2(x, y) .

Системы совокупностей неравенств с двумя переменными

Система неравенств представляет собой конъюнкцию этих неравенств. Решением системы является всякое значение (x, y) , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Совокупность неравенств представляет собой дизъюнкцию этих неравенств. Решением совокупности является всякое значение (x, y) , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Задача. Решить графически систему неравенств


Решение. у = х и х 2 + у 2 = 25. Решаем каждое неравенство системы.


Графиком системы будет множество точек плоскости, являющихся пересечением (двойная штриховка) множеств решений первого и второго неравенств.


Задача. Решить графически совокупность неравенств



















Решение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х + 4 и х 2 + у 2 = 16. Решаем каждое неравенство совокупности. Графиком совокупности будет множество точек плоскости, являющихся объединением множеств решений первого и второго неравенств.

Упражнения для самостоятельной работы


1. Решите графически неравенства: а) у > 2x ; б) у < 2x + 3;


в) x 2 + y 2 > 9; г) x 2 + y 2 £ 4.


2. Решите графически системы неравенств:


а) в)

Неравенством с двумя переменными х и у называется неравенство вида:

(или знак )

где – некоторое выражение с данными переменными.

Решением неравенства с двумя переменными называют упорядоченную пару чисел при которой это неравенство обращается в верное числовое неравенство.

Решить неравенство – значит найти множество всех его решений. Решением неравенства с двумя переменными является некоторое множество точек координатной плоскости.

Основным методом решений данных неравенств является графический метод. Он заключается в том, что строятся линии границ (если неравенство строгое, линия строится пунктиром). Уравнение границы получаем, если в заданном неравенстве заменяем знак неравенства на знак равенства. Все линии в совокупности разбивают координатную плоскость на части. Искомое множество точек, которое соответствует заданному неравенству или системе неравенств, можно определить, если взять контрольную точку внутри каждой области области.

Совокупность неравенств с двумя переменными имеет вид

Решением совокупности является объединение всех решений неравенств.

Пример 1. Решить систему

Решение. Построим в системе Оху соответствующие линии (рис.19):

Уравнение задает окружность с центром в точке О ¢(0; 1) и R = 2.

Уравнение определяет параболу с вершиной в точке О (0; 0).

Найдем решения каждого из неравенств, входящих в систему. Первому неравенству соответствует область внутри окружности и сама окружность (в справедливости этого убеждаемся, если подставим в неравенство координаты любой точки из этой области). Второму неравенству соответствует область, расположенная под параболой.


Решение системы – пересечение двух указанных областей (на рис.19 показано наложением двух штриховок).

Задания

I уровень

1.1. Решить графически:

3) ; 4) ;

5) ; 6) ;

7) ;

II уровень

2.1. Решите графически:

1) 2)

2.2. Найдите количество целочисленных решений системы:

1) 2) 3)

2.3. Найдите все целочисленные решения системы:

1) 2)

3)

2.4. Решите неравенство. В ответе укажите количество решений с двумя целочисленными координатами

Фестиваль исследовательских и творческих работ учащихся

«Портфолио»

Уравнения и неравенства с двумя переменными

и их геометрическое решение.

Федорович Юлия

ученица 10 класса

МОУ СОШ №26

Руководитель:

Кульпина Е.В.

учитель математики

МОУ СОШ №26

г.Зима, 2007г.

    Введение.

2. Уравнения с двумя переменными, их геометрическое решение и применение.

2.1 Системы уравнений.

2.2 Примеры решения уравнений с двумя переменными.

2.3. Примеры решения систем уравнений с двумя переменными.

3. Неравенства и их геометрическое решение.

3.1. Примеры решения неравенств с двумя переменными

4. Графический метод решения задач с параметрами.

5.Заключение.

6.Список использованной литературы.

1.Введение

Я взяла работу на эту тему, потому что изучение поведения функций и построение их графиков является важным разделом математики, и свободное владение техникой построения графиков часто помогает решать многие задачи, и порой является единственным средством их решения. Также графический метод решения уравнений позволяет определить число корней уравнения, значения корня, найти приближенные, а иногда точные значения корней.

В технике и физике часто используются именно графическим способом задания функций. Ученый- сейсмолог, анализируя сейсмограмму, узнает, когда было землетрясение, где оно произошло, определяет силу и характер толчков. Врач, исследовавший больного, может по кардиограмме судить о нарушениях сердечной деятельности: изучение кардиограммы помогает правильно поставить диагноз заболевания. Инженер – радиоэлектроник по характеристике полупроводникового элемента выбирает наиболее подходящий режим его работы. Количество таких примеров легко увеличить. Более того, по мере развития математики растет проникновение графического метода в самые различные области жизни человека. В частности, использование функциональных зависимостей и построение графиков широко применяется в экономике. Значит, растет и важность изучения рассматриваемого раздела математики в школе, в вузе, и особенно- важность самостоятельной работы над ним.

С развитием вычислительной техники, с ее прекрасными графическими средствами и высокими скоростями выполнения операций, работа с графиками функций стала значительно интересней, наглядней, увлекательней. Имея аналитическое представление некоторой зависимости, можно построить график быстро, в нужном масштабе и цвете, используя для этого различные программные средства.

    Уравнения с двумя переменными и их геометрическое решение.

Уравнение вида f (x ; y )=0 называется уравнением с двумя переменными.

Решением уравнения с двумя переменными называется упорядоченная пара чисел (α, β), при подстановке которой (α – вместо х, β – вместо у) в уравнении имеет смысл выражение f (α; β)=0

Например, для уравнения ((х +1)) 2 + у 2 =0 упорядоченная пара чисел (0;0) есть его решение, так как выражение ((0+1)
) 2 +0 2 имеет смысл и равно нулю, но упорядоченная пара чисел (-1;0) не является решением, так как не определен
и поэтому выражение ((-1+1)) 2 +0 2 не имеет смысла.

Решить уравнение – значит найти множество всех его решений.

Уравнения с двумя переменными может:

а) иметь одно решение. Например, уравнение х 2 +у 2 =0 имеет одно решение (0;0);

б) иметь несколько решений. Например, данное уравнение (‌‌│х │- 1) 2 +(│у │- 2) 2 имеет четыре решения: (1;2),(-1;2),(1;-2),(-1;-2);

в) не иметь решений. Например уравнение х 2 2 + 1=0 не имеет решений;

г) иметь бесконечно много решений. Например, такое уравнение, как х-у+1=0 имеет бесконечно много решений

Иногда бывает полезной геометрическая интерпретация уравнения f (x ; y )= g (x ; y ) . На координатной плоскости хОу множество всех решений – некоторое множество точек. В ряде случаев это множество точек есть некоторая линия, и в этом случае говорят, что уравнение f (x ; y )= g (x ; y ) есть уравнение этой линии, например:

рис.1 рис.2 рис.3




рис.4 рис.5 рис.6

2.1 Системы уравнений

Пусть заданы два уравнения с неизвестными х и у

F 1 (x ; y )=0 и F 2 (x ; y )=0

Будем считать, что первое из этих уравнений задаёт на плоскости переменных х и у линию Г 1 , а второе - линию Г 2 . Чтобы найти точки пересечения этих линий, надо найти все пары чисел (α, β), такие, что при замене в данных уравнениях неизвестной х на число α и неизвестной у на число β, получаются верные числовые равенства. Если поставлена задача об отыскании всех таких пар чисел, то говорят, что требуется решить систему уравнений и записывают эту систему с помощью фигурной скобки в следующем виде

Решением системы называется такая пара чисел (α, β), которая является решением как первого, так и второго уравнений данной системы.

Решить систему – значить найти множество всех ее решений, или доказать, что решений нет.

В ряде случаев геометрическая интерпретация каждого уравнения системы, ибо решения системы соответствуют точкам пересечения линий, задаваемых каждым уравнением системы. Часто геометрическая интерпретация позволяет лишь догадаться о числе решений.

Например, выясним, сколько решений имеет система уравнений

Первое из уравнений системы задает окружность радиусом R=
c центром (0;0), а второе – параболу, вершина которой находится в той же точке. Теперь ясно, что имеются две точки пересечения этих линий. Следовательно, система имеет два решения – это (1;1) и (-1;1)

      Примеры решения уравнений с двумя переменными

Изобразите все точки с координатами (х;у), для которых выполняется равенство.

1. (х-1)(2у-3)=0

Данное уравнение равносильно совокупности двух уравнений


Каждое из полученных уравнений определяет на координатной плоскости прямую.

2. (х-у)(х 2 -4)=0

Решением данного уравнения является множество точек плоскости, координаты, которых удовлетворяют совокупности уравнений


На координатной плоскости решение будет выглядеть так

3.
2

Решение: Воспользуемся определением абсолютной величины и заменим данное уравнение равносильной совокупностью двух систем



у=х 2 +2х у = -х 2 +2х

х 2 +2х=0 х в =1 у в =1

х(х+2)=0

х в =-1 у в =1-2=-1

      Примеры решения систем.

Решить систему графическим способом:

1)

В каждом уравнении выразим переменную у через х и построим графики соответствующих функций:

у =
+1

а) построим график функции у=

График функции у =+1 получается из графика у = путем сдвига на две единицы вправо и на одну единицу вверх:

у = - 0,5х+2 - это линейная функция, графиком которой является прямая

Решением данной системы являются координаты точки пересечения графиков функций.

Ответ (2;1)

3.Неравенства и их геометрическое решение.

Неравенство с двумя неизвестными можно представить так: f (x ; y ) >0, где Z = f (x ; y ) – функция двух аргументов х и у . Если мы рассмотрим уравнение f (x ; y ) = 0, то можно построить его геометрическое изображение, т.е. множество точек М(х;у), координаты которых удовлетворяют этому уравнению. В каждой из областей функция f сохраняет знак, остается выбрать те из них, в которых f (x ;у) >0.

Рассмотрим линейное неравенство ax + by + c >0. Если один из коэффициентов a или b отличен от нуля, то уравнение ax + by + c =0 задает прямую, разбивающую плоскость на две полуплоскости. В каждой из них будет сохраняться знак функции z = ax + by + c . Для определения знака можно взять любую точку полуплоскости и вычислить значение функции z в этой точке.

Например:

3х – 2у +6 >0.

f (x ;у) = 3х- 2у +6,

f (-3;0) = -3 <0,

f (0;0) = 6>0.

Решением неравенства является множество точек правой полуплоскости (закрашенной на рисунке 1)

Рис. 1

Неравенству │y│+0,5 ≤
удовлетворяет множество точек плоскости (х;у), заштрихованной на рисунке 2. Для построения данной области воспользуемся определением абсолютной величины и способами построения графика функции с помощью параллельного переноса графика функции по оси ОХ или ОУ



Р
ис.2


f (x ; y ) =

f (0;0) = -1,5<0

f (2;2)= 2,1>0

3.1. Примеры решения неравенств с двумя переменными.

Изобразите множество решений неравенства

а)

    у=х 2 -2х

    у=|х 2 -2х|

    |у|=|х 2 -2х|

f (x ; y )=

f (1;0)=-1<0

f (3;0) = -3<0

f (1;2) =1>0

f (-2;-2) = -6<0

f (1;-2)=1>0

Решением неравенства является закрашенная область на рисунке 3. Для построения данной области применялись способы построения графика с модулем

Рис. 3

1)
2)
<0



f(2;0)=3>0

f(0;2)=-1<0

f(-2;0)=1>0

f(0;-2)=3>0


Для решения данного неравенства воспользуемся определением абсолютной величины


3.2. Примеры решения систем неравенств.

Изобразите множество решений системы неравенств на координатной плоскости

а)

б)


4. Графический метод решения задач с параметрами

Задачами с параметрами называют задачи, в которых участвуют фактически функции нескольких переменных, из которых одна переменная х выбрана в качестве независимой переменной, а оставшиеся играют роль параметров. При решении таких задач особенно эффективны графические методы. Приведем примеры


По рисунку видно, что прямая у=4 пересекает график функции у=
в трех точках. Значит, исходное уравнение имеет три решения при а= 4.

    Найти все значения параметра а , при которых уравнение х 2 -6|х|+5=а имеет ровно три различных корня.

Решение: Построим график функции у=х 2 -6х+5 для х ≥0 и отражаем его зеркально относительно оси ординат. Семейство прямых, параллельных оси абсцисс у=а , пересекает график в трех точках при а =5

3. Найти все значения а, при которых неравенство
имеет хотя бы одно положительное решение.

Множество точек координатной плоскости, значения координаты х и параметра а которых удовлетворяют данному неравенству, представляют собой объединение двух областей, ограниченных параболами. Решением данного задания является множество точек, расположенных в правой полуплоскости при


х+а+х<2

Похожие статьи